Ruby  2.0.0p247(2013-06-27revision41674)
gc.c
Go to the documentation of this file.
00001 /**********************************************************************
00002 
00003   gc.c -
00004 
00005   $Author: nagachika $
00006   created at: Tue Oct  5 09:44:46 JST 1993
00007 
00008   Copyright (C) 1993-2007 Yukihiro Matsumoto
00009   Copyright (C) 2000  Network Applied Communication Laboratory, Inc.
00010   Copyright (C) 2000  Information-technology Promotion Agency, Japan
00011 
00012 **********************************************************************/
00013 
00014 #include "ruby/ruby.h"
00015 #include "ruby/st.h"
00016 #include "ruby/re.h"
00017 #include "ruby/io.h"
00018 #include "ruby/thread.h"
00019 #include "ruby/util.h"
00020 #include "eval_intern.h"
00021 #include "vm_core.h"
00022 #include "internal.h"
00023 #include "gc.h"
00024 #include "constant.h"
00025 #include "ruby_atomic.h"
00026 #include "probes.h"
00027 #include <stdio.h>
00028 #include <setjmp.h>
00029 #include <sys/types.h>
00030 #include <assert.h>
00031 
00032 #ifdef HAVE_SYS_TIME_H
00033 #include <sys/time.h>
00034 #endif
00035 
00036 #ifdef HAVE_SYS_RESOURCE_H
00037 #include <sys/resource.h>
00038 #endif
00039 #if defined(__native_client__) && defined(NACL_NEWLIB)
00040 # include "nacl/resource.h"
00041 # undef HAVE_POSIX_MEMALIGN
00042 # undef HAVE_MEMALIGN
00043 
00044 #endif
00045 
00046 #if defined _WIN32 || defined __CYGWIN__
00047 #include <windows.h>
00048 #elif defined(HAVE_POSIX_MEMALIGN)
00049 #elif defined(HAVE_MEMALIGN)
00050 #include <malloc.h>
00051 #endif
00052 
00053 #ifdef HAVE_VALGRIND_MEMCHECK_H
00054 # include <valgrind/memcheck.h>
00055 # ifndef VALGRIND_MAKE_MEM_DEFINED
00056 #  define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE((p), (n))
00057 # endif
00058 # ifndef VALGRIND_MAKE_MEM_UNDEFINED
00059 #  define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE((p), (n))
00060 # endif
00061 #else
00062 # define VALGRIND_MAKE_MEM_DEFINED(p, n) 0
00063 # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) 0
00064 #endif
00065 
00066 #define rb_setjmp(env) RUBY_SETJMP(env)
00067 #define rb_jmp_buf rb_jmpbuf_t
00068 
00069 #ifndef GC_MALLOC_LIMIT
00070 #define GC_MALLOC_LIMIT 8000000
00071 #endif
00072 #define HEAP_MIN_SLOTS 10000
00073 #define FREE_MIN  4096
00074 
00075 typedef struct {
00076     unsigned int initial_malloc_limit;
00077     unsigned int initial_heap_min_slots;
00078     unsigned int initial_free_min;
00079 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
00080     int gc_stress;
00081 #endif
00082 } ruby_gc_params_t;
00083 
00084 static ruby_gc_params_t initial_params = {
00085     GC_MALLOC_LIMIT,
00086     HEAP_MIN_SLOTS,
00087     FREE_MIN,
00088 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
00089     FALSE,
00090 #endif
00091 };
00092 
00093 #define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
00094 
00095 #ifndef GC_PROFILE_MORE_DETAIL
00096 #define GC_PROFILE_MORE_DETAIL 0
00097 #endif
00098 
00099 typedef struct gc_profile_record {
00100     double gc_time;
00101     double gc_invoke_time;
00102 
00103     size_t heap_total_objects;
00104     size_t heap_use_size;
00105     size_t heap_total_size;
00106 
00107     int is_marked;
00108 
00109 #if GC_PROFILE_MORE_DETAIL
00110     double gc_mark_time;
00111     double gc_sweep_time;
00112 
00113     size_t heap_use_slots;
00114     size_t heap_live_objects;
00115     size_t heap_free_objects;
00116 
00117     int have_finalize;
00118 
00119     size_t allocate_increase;
00120     size_t allocate_limit;
00121 #endif
00122 } gc_profile_record;
00123 
00124 #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
00125 #pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
00126 #endif
00127 
00128 typedef struct RVALUE {
00129     union {
00130         struct {
00131             VALUE flags;                /* always 0 for freed obj */
00132             struct RVALUE *next;
00133         } free;
00134         struct RBasic  basic;
00135         struct RObject object;
00136         struct RClass  klass;
00137         struct RFloat  flonum;
00138         struct RString string;
00139         struct RArray  array;
00140         struct RRegexp regexp;
00141         struct RHash   hash;
00142         struct RData   data;
00143         struct RTypedData   typeddata;
00144         struct RStruct rstruct;
00145         struct RBignum bignum;
00146         struct RFile   file;
00147         struct RNode   node;
00148         struct RMatch  match;
00149         struct RRational rational;
00150         struct RComplex complex;
00151     } as;
00152 #ifdef GC_DEBUG
00153     const char *file;
00154     int   line;
00155 #endif
00156 } RVALUE;
00157 
00158 #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
00159 #pragma pack(pop)
00160 #endif
00161 
00162 struct heaps_slot {
00163     struct heaps_header *header;
00164     uintptr_t *bits;
00165     RVALUE *freelist;
00166     struct heaps_slot *next;
00167     struct heaps_slot *prev;
00168     struct heaps_slot *free_next;
00169 };
00170 
00171 struct heaps_header {
00172     struct heaps_slot *base;
00173     uintptr_t *bits;
00174     RVALUE *start;
00175     RVALUE *end;
00176     size_t limit;
00177 };
00178 
00179 struct heaps_free_bitmap {
00180     struct heaps_free_bitmap *next;
00181 };
00182 
00183 struct gc_list {
00184     VALUE *varptr;
00185     struct gc_list *next;
00186 };
00187 
00188 #define STACK_CHUNK_SIZE 500
00189 
00190 typedef struct stack_chunk {
00191     VALUE data[STACK_CHUNK_SIZE];
00192     struct stack_chunk *next;
00193 } stack_chunk_t;
00194 
00195 typedef struct mark_stack {
00196     stack_chunk_t *chunk;
00197     stack_chunk_t *cache;
00198     size_t index;
00199     size_t limit;
00200     size_t cache_size;
00201     size_t unused_cache_size;
00202 } mark_stack_t;
00203 
00204 #ifndef CALC_EXACT_MALLOC_SIZE
00205 #define CALC_EXACT_MALLOC_SIZE 0
00206 #endif
00207 
00208 typedef struct rb_objspace {
00209     struct {
00210         size_t limit;
00211         size_t increase;
00212 #if CALC_EXACT_MALLOC_SIZE
00213         size_t allocated_size;
00214         size_t allocations;
00215 #endif
00216     } malloc_params;
00217     struct {
00218         size_t increment;
00219         struct heaps_slot *ptr;
00220         struct heaps_slot *sweep_slots;
00221         struct heaps_slot *free_slots;
00222         struct heaps_header **sorted;
00223         size_t length;
00224         size_t used;
00225         struct heaps_free_bitmap *free_bitmap;
00226         RVALUE *range[2];
00227         struct heaps_header *freed;
00228         size_t marked_num;
00229         size_t free_num;
00230         size_t free_min;
00231         size_t final_num;
00232         size_t do_heap_free;
00233     } heap;
00234     struct {
00235         int dont_gc;
00236         int dont_lazy_sweep;
00237         int during_gc;
00238         rb_atomic_t finalizing;
00239     } flags;
00240     struct {
00241         st_table *table;
00242         RVALUE *deferred;
00243     } final;
00244     mark_stack_t mark_stack;
00245     struct {
00246         int run;
00247         gc_profile_record *record;
00248         size_t count;
00249         size_t size;
00250         double invoke_time;
00251     } profile;
00252     struct gc_list *global_list;
00253     size_t count;
00254     size_t total_allocated_object_num;
00255     size_t total_freed_object_num;
00256     int gc_stress;
00257 
00258     struct mark_func_data_struct {
00259         void *data;
00260         void (*mark_func)(VALUE v, void *data);
00261     } *mark_func_data;
00262 } rb_objspace_t;
00263 
00264 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
00265 #define rb_objspace (*GET_VM()->objspace)
00266 #define ruby_initial_gc_stress  initial_params.gc_stress
00267 int *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress;
00268 #else
00269 static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT}};
00270 int *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress;
00271 #endif
00272 #define malloc_limit            objspace->malloc_params.limit
00273 #define malloc_increase         objspace->malloc_params.increase
00274 #define heaps                   objspace->heap.ptr
00275 #define heaps_length            objspace->heap.length
00276 #define heaps_used              objspace->heap.used
00277 #define lomem                   objspace->heap.range[0]
00278 #define himem                   objspace->heap.range[1]
00279 #define heaps_inc               objspace->heap.increment
00280 #define heaps_freed             objspace->heap.freed
00281 #define dont_gc                 objspace->flags.dont_gc
00282 #define during_gc               objspace->flags.during_gc
00283 #define finalizing              objspace->flags.finalizing
00284 #define finalizer_table         objspace->final.table
00285 #define deferred_final_list     objspace->final.deferred
00286 #define global_List             objspace->global_list
00287 #define ruby_gc_stress          objspace->gc_stress
00288 #define initial_malloc_limit    initial_params.initial_malloc_limit
00289 #define initial_heap_min_slots  initial_params.initial_heap_min_slots
00290 #define initial_free_min        initial_params.initial_free_min
00291 
00292 #define is_lazy_sweeping(objspace) ((objspace)->heap.sweep_slots != 0)
00293 
00294 #if SIZEOF_LONG == SIZEOF_VOIDP
00295 # define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG)
00296 # define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */
00297 #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
00298 # define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2)
00299 # define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \
00300    ((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1))
00301 #else
00302 # error not supported
00303 #endif
00304 
00305 #define RANY(o) ((RVALUE*)(o))
00306 #define has_free_object (objspace->heap.free_slots && objspace->heap.free_slots->freelist)
00307 
00308 #define HEAP_HEADER(p) ((struct heaps_header *)(p))
00309 #define GET_HEAP_HEADER(x) (HEAP_HEADER((uintptr_t)(x) & ~(HEAP_ALIGN_MASK)))
00310 #define GET_HEAP_SLOT(x) (GET_HEAP_HEADER(x)->base)
00311 #define GET_HEAP_BITMAP(x) (GET_HEAP_HEADER(x)->bits)
00312 #define NUM_IN_SLOT(p) (((uintptr_t)(p) & HEAP_ALIGN_MASK)/sizeof(RVALUE))
00313 #define BITMAP_INDEX(p) (NUM_IN_SLOT(p) / (sizeof(uintptr_t) * CHAR_BIT))
00314 #define BITMAP_OFFSET(p) (NUM_IN_SLOT(p) & ((sizeof(uintptr_t) * CHAR_BIT)-1))
00315 #define MARKED_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] & ((uintptr_t)1 << BITMAP_OFFSET(p)))
00316 
00317 #ifndef HEAP_ALIGN_LOG
00318 /* default tiny heap size: 16KB */
00319 #define HEAP_ALIGN_LOG 14
00320 #endif
00321 
00322 #define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod))
00323 
00324 enum {
00325     HEAP_ALIGN = (1UL << HEAP_ALIGN_LOG),
00326     HEAP_ALIGN_MASK = (~(~0UL << HEAP_ALIGN_LOG)),
00327     REQUIRED_SIZE_BY_MALLOC = (sizeof(size_t) * 5),
00328     HEAP_SIZE = (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC),
00329     HEAP_OBJ_LIMIT = (unsigned int)((HEAP_SIZE - sizeof(struct heaps_header))/sizeof(struct RVALUE)),
00330     HEAP_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), sizeof(uintptr_t) * CHAR_BIT)
00331 };
00332 
00333 int ruby_gc_debug_indent = 0;
00334 VALUE rb_mGC;
00335 extern st_table *rb_class_tbl;
00336 int ruby_disable_gc_stress = 0;
00337 
00338 static void rb_objspace_call_finalizer(rb_objspace_t *objspace);
00339 static VALUE define_final0(VALUE obj, VALUE block);
00340 VALUE rb_define_final(VALUE obj, VALUE block);
00341 VALUE rb_undefine_final(VALUE obj);
00342 static void run_final(rb_objspace_t *objspace, VALUE obj);
00343 static void initial_expand_heap(rb_objspace_t *objspace);
00344 
00345 static void negative_size_allocation_error(const char *);
00346 static void *aligned_malloc(size_t, size_t);
00347 static void aligned_free(void *);
00348 
00349 static void init_mark_stack(mark_stack_t *stack);
00350 
00351 static VALUE lazy_sweep_enable(void);
00352 static int garbage_collect(rb_objspace_t *);
00353 static int gc_prepare_free_objects(rb_objspace_t *);
00354 static void mark_tbl(rb_objspace_t *, st_table *);
00355 static void rest_sweep(rb_objspace_t *);
00356 static void gc_mark_stacked_objects(rb_objspace_t *);
00357 
00358 static double getrusage_time(void);
00359 static inline void gc_prof_timer_start(rb_objspace_t *);
00360 static inline void gc_prof_timer_stop(rb_objspace_t *, int);
00361 static inline void gc_prof_mark_timer_start(rb_objspace_t *);
00362 static inline void gc_prof_mark_timer_stop(rb_objspace_t *);
00363 static inline void gc_prof_sweep_timer_start(rb_objspace_t *);
00364 static inline void gc_prof_sweep_timer_stop(rb_objspace_t *);
00365 static inline void gc_prof_set_malloc_info(rb_objspace_t *);
00366 
00367 
00368 /*
00369   --------------------------- ObjectSpace -----------------------------
00370 */
00371 
00372 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
00373 rb_objspace_t *
00374 rb_objspace_alloc(void)
00375 {
00376     rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t));
00377     memset(objspace, 0, sizeof(*objspace));
00378     malloc_limit = initial_malloc_limit;
00379     ruby_gc_stress = ruby_initial_gc_stress;
00380 
00381     return objspace;
00382 }
00383 #endif
00384 
00385 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
00386 static void free_stack_chunks(mark_stack_t *);
00387 
00388 void
00389 rb_objspace_free(rb_objspace_t *objspace)
00390 {
00391     rest_sweep(objspace);
00392     if (objspace->profile.record) {
00393         free(objspace->profile.record);
00394         objspace->profile.record = 0;
00395     }
00396     if (global_List) {
00397         struct gc_list *list, *next;
00398         for (list = global_List; list; list = next) {
00399             next = list->next;
00400             xfree(list);
00401         }
00402     }
00403     if (objspace->heap.free_bitmap) {
00404         struct heaps_free_bitmap *list, *next;
00405         for (list = objspace->heap.free_bitmap; list; list = next) {
00406             next = list->next;
00407             free(list);
00408         }
00409     }
00410     if (objspace->heap.sorted) {
00411         size_t i;
00412         for (i = 0; i < heaps_used; ++i) {
00413             free(objspace->heap.sorted[i]->bits);
00414             aligned_free(objspace->heap.sorted[i]);
00415         }
00416         free(objspace->heap.sorted);
00417         heaps_used = 0;
00418         heaps = 0;
00419     }
00420     free_stack_chunks(&objspace->mark_stack);
00421     free(objspace);
00422 }
00423 #endif
00424 
00425 void
00426 rb_global_variable(VALUE *var)
00427 {
00428     rb_gc_register_address(var);
00429 }
00430 
00431 static void
00432 allocate_sorted_heaps(rb_objspace_t *objspace, size_t next_heaps_length)
00433 {
00434     struct heaps_header **p;
00435     struct heaps_free_bitmap *bits;
00436     size_t size, add, i;
00437 
00438     size = next_heaps_length*sizeof(struct heaps_header *);
00439     add = next_heaps_length - heaps_used;
00440 
00441     if (heaps_used > 0) {
00442         p = (struct heaps_header **)realloc(objspace->heap.sorted, size);
00443         if (p) objspace->heap.sorted = p;
00444     }
00445     else {
00446         p = objspace->heap.sorted = (struct heaps_header **)malloc(size);
00447     }
00448 
00449     if (p == 0) {
00450         during_gc = 0;
00451         rb_memerror();
00452     }
00453 
00454     for (i = 0; i < add; i++) {
00455         bits = (struct heaps_free_bitmap *)malloc(HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
00456         if (bits == 0) {
00457             during_gc = 0;
00458             rb_memerror();
00459             return;
00460         }
00461         bits->next = objspace->heap.free_bitmap;
00462         objspace->heap.free_bitmap = bits;
00463     }
00464 }
00465 
00466 static void
00467 link_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
00468 {
00469     slot->free_next = objspace->heap.free_slots;
00470     objspace->heap.free_slots = slot;
00471 }
00472 
00473 static void
00474 unlink_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
00475 {
00476     objspace->heap.free_slots = slot->free_next;
00477     slot->free_next = NULL;
00478 }
00479 
00480 static void
00481 assign_heap_slot(rb_objspace_t *objspace)
00482 {
00483     RVALUE *p, *pend, *membase;
00484     struct heaps_slot *slot;
00485     size_t hi, lo, mid;
00486     size_t objs;
00487 
00488     objs = HEAP_OBJ_LIMIT;
00489     p = (RVALUE*)aligned_malloc(HEAP_ALIGN, HEAP_SIZE);
00490     if (p == 0) {
00491         during_gc = 0;
00492         rb_memerror();
00493     }
00494     slot = (struct heaps_slot *)malloc(sizeof(struct heaps_slot));
00495     if (slot == 0) {
00496        aligned_free(p);
00497        during_gc = 0;
00498        rb_memerror();
00499     }
00500     MEMZERO((void*)slot, struct heaps_slot, 1);
00501 
00502     slot->next = heaps;
00503     if (heaps) heaps->prev = slot;
00504     heaps = slot;
00505 
00506     membase = p;
00507     p = (RVALUE*)((VALUE)p + sizeof(struct heaps_header));
00508     if ((VALUE)p % sizeof(RVALUE) != 0) {
00509        p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE)));
00510        objs = (HEAP_SIZE - (size_t)((VALUE)p - (VALUE)membase))/sizeof(RVALUE);
00511     }
00512 
00513     lo = 0;
00514     hi = heaps_used;
00515     while (lo < hi) {
00516         register RVALUE *mid_membase;
00517         mid = (lo + hi) / 2;
00518         mid_membase = (RVALUE *)objspace->heap.sorted[mid];
00519         if (mid_membase < membase) {
00520             lo = mid + 1;
00521         }
00522         else if (mid_membase > membase) {
00523             hi = mid;
00524         }
00525         else {
00526             rb_bug("same heap slot is allocated: %p at %"PRIuVALUE, (void *)membase, (VALUE)mid);
00527         }
00528     }
00529     if (hi < heaps_used) {
00530         MEMMOVE(&objspace->heap.sorted[hi+1], &objspace->heap.sorted[hi], struct heaps_header*, heaps_used - hi);
00531     }
00532     heaps->header = (struct heaps_header *)membase;
00533     objspace->heap.sorted[hi] = heaps->header;
00534     objspace->heap.sorted[hi]->start = p;
00535     objspace->heap.sorted[hi]->end = (p + objs);
00536     objspace->heap.sorted[hi]->base = heaps;
00537     objspace->heap.sorted[hi]->limit = objs;
00538     assert(objspace->heap.free_bitmap != NULL);
00539     heaps->bits = (uintptr_t *)objspace->heap.free_bitmap;
00540     objspace->heap.sorted[hi]->bits = (uintptr_t *)objspace->heap.free_bitmap;
00541     objspace->heap.free_bitmap = objspace->heap.free_bitmap->next;
00542     memset(heaps->bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
00543     pend = p + objs;
00544     if (lomem == 0 || lomem > p) lomem = p;
00545     if (himem < pend) himem = pend;
00546     heaps_used++;
00547 
00548     while (p < pend) {
00549         p->as.free.flags = 0;
00550         p->as.free.next = heaps->freelist;
00551         heaps->freelist = p;
00552         p++;
00553     }
00554     link_free_heap_slot(objspace, heaps);
00555 }
00556 
00557 static void
00558 add_heap_slots(rb_objspace_t *objspace, size_t add)
00559 {
00560     size_t i;
00561     size_t next_heaps_length;
00562 
00563     next_heaps_length = heaps_used + add;
00564 
00565     if (next_heaps_length > heaps_length) {
00566         allocate_sorted_heaps(objspace, next_heaps_length);
00567         heaps_length = next_heaps_length;
00568     }
00569 
00570     for (i = 0; i < add; i++) {
00571         assign_heap_slot(objspace);
00572     }
00573     heaps_inc = 0;
00574 }
00575 
00576 static void
00577 init_heap(rb_objspace_t *objspace)
00578 {
00579     add_heap_slots(objspace, HEAP_MIN_SLOTS / HEAP_OBJ_LIMIT);
00580     init_mark_stack(&objspace->mark_stack);
00581 
00582 #ifdef USE_SIGALTSTACK
00583     {
00584         /* altstack of another threads are allocated in another place */
00585         rb_thread_t *th = GET_THREAD();
00586         void *tmp = th->altstack;
00587         th->altstack = malloc(rb_sigaltstack_size());
00588         free(tmp); /* free previously allocated area */
00589     }
00590 #endif
00591 
00592     objspace->profile.invoke_time = getrusage_time();
00593     finalizer_table = st_init_numtable();
00594 }
00595 
00596 static void
00597 initial_expand_heap(rb_objspace_t *objspace)
00598 {
00599     size_t min_size = initial_heap_min_slots / HEAP_OBJ_LIMIT;
00600 
00601     if (min_size > heaps_used) {
00602         add_heap_slots(objspace, min_size - heaps_used);
00603     }
00604 }
00605 
00606 static void
00607 set_heaps_increment(rb_objspace_t *objspace)
00608 {
00609     size_t next_heaps_length = (size_t)(heaps_used * 1.8);
00610 
00611     if (next_heaps_length == heaps_used) {
00612         next_heaps_length++;
00613     }
00614 
00615     heaps_inc = next_heaps_length - heaps_used;
00616 
00617     if (next_heaps_length > heaps_length) {
00618         allocate_sorted_heaps(objspace, next_heaps_length);
00619         heaps_length = next_heaps_length;
00620     }
00621 }
00622 
00623 static int
00624 heaps_increment(rb_objspace_t *objspace)
00625 {
00626     if (heaps_inc > 0) {
00627         assign_heap_slot(objspace);
00628         heaps_inc--;
00629         return TRUE;
00630     }
00631     return FALSE;
00632 }
00633 
00634 static VALUE
00635 newobj(VALUE klass, VALUE flags)
00636 {
00637     rb_objspace_t *objspace = &rb_objspace;
00638     VALUE obj;
00639 
00640     if (UNLIKELY(during_gc)) {
00641         dont_gc = 1;
00642         during_gc = 0;
00643         rb_bug("object allocation during garbage collection phase");
00644     }
00645 
00646     if (UNLIKELY(ruby_gc_stress && !ruby_disable_gc_stress)) {
00647         if (!garbage_collect(objspace)) {
00648             during_gc = 0;
00649             rb_memerror();
00650         }
00651     }
00652 
00653     if (UNLIKELY(!has_free_object)) {
00654         if (!gc_prepare_free_objects(objspace)) {
00655             during_gc = 0;
00656             rb_memerror();
00657         }
00658     }
00659 
00660     obj = (VALUE)objspace->heap.free_slots->freelist;
00661     objspace->heap.free_slots->freelist = RANY(obj)->as.free.next;
00662     if (objspace->heap.free_slots->freelist == NULL) {
00663         unlink_free_heap_slot(objspace, objspace->heap.free_slots);
00664     }
00665 
00666     MEMZERO((void*)obj, RVALUE, 1);
00667 #ifdef GC_DEBUG
00668     RANY(obj)->file = rb_sourcefile();
00669     RANY(obj)->line = rb_sourceline();
00670 #endif
00671     objspace->total_allocated_object_num++;
00672 
00673     return obj;
00674 }
00675 
00676 VALUE
00677 rb_newobj(void)
00678 {
00679     return newobj(0, T_NONE);
00680 }
00681 
00682 VALUE
00683 rb_newobj_of(VALUE klass, VALUE flags)
00684 {
00685     VALUE obj;
00686 
00687     obj = newobj(klass, flags);
00688     OBJSETUP(obj, klass, flags);
00689 
00690     return obj;
00691 }
00692 
00693 NODE*
00694 rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2)
00695 {
00696     NODE *n = (NODE*)rb_newobj();
00697 
00698     n->flags |= T_NODE;
00699     nd_set_type(n, type);
00700 
00701     n->u1.value = a0;
00702     n->u2.value = a1;
00703     n->u3.value = a2;
00704 
00705     return n;
00706 }
00707 
00708 VALUE
00709 rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
00710 {
00711     NEWOBJ(data, struct RData);
00712     if (klass) Check_Type(klass, T_CLASS);
00713     OBJSETUP(data, klass, T_DATA);
00714     data->data = datap;
00715     data->dfree = dfree;
00716     data->dmark = dmark;
00717 
00718     return (VALUE)data;
00719 }
00720 
00721 VALUE
00722 rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type)
00723 {
00724     NEWOBJ(data, struct RTypedData);
00725 
00726     if (klass) Check_Type(klass, T_CLASS);
00727 
00728     OBJSETUP(data, klass, T_DATA);
00729 
00730     data->data = datap;
00731     data->typed_flag = 1;
00732     data->type = type;
00733 
00734     return (VALUE)data;
00735 }
00736 
00737 size_t
00738 rb_objspace_data_type_memsize(VALUE obj)
00739 {
00740     if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) {
00741         return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj));
00742     }
00743     else {
00744         return 0;
00745     }
00746 }
00747 
00748 const char *
00749 rb_objspace_data_type_name(VALUE obj)
00750 {
00751     if (RTYPEDDATA_P(obj)) {
00752         return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
00753     }
00754     else {
00755         return 0;
00756     }
00757 }
00758 
00759 static void gc_mark(rb_objspace_t *objspace, VALUE ptr);
00760 static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr);
00761 
00762 static inline int
00763 is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)
00764 {
00765     register RVALUE *p = RANY(ptr);
00766     register struct heaps_header *heap;
00767     register size_t hi, lo, mid;
00768 
00769     if (p < lomem || p > himem) return FALSE;
00770     if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE;
00771 
00772     /* check if p looks like a pointer using bsearch*/
00773     lo = 0;
00774     hi = heaps_used;
00775     while (lo < hi) {
00776         mid = (lo + hi) / 2;
00777         heap = objspace->heap.sorted[mid];
00778         if (heap->start <= p) {
00779             if (p < heap->end)
00780                 return TRUE;
00781             lo = mid + 1;
00782         }
00783         else {
00784             hi = mid;
00785         }
00786     }
00787     return FALSE;
00788 }
00789 
00790 static int
00791 free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data)
00792 {
00793     if (!me->mark) {
00794         rb_free_method_entry(me);
00795     }
00796     return ST_CONTINUE;
00797 }
00798 
00799 void
00800 rb_free_m_table(st_table *tbl)
00801 {
00802     st_foreach(tbl, free_method_entry_i, 0);
00803     st_free_table(tbl);
00804 }
00805 
00806 static int
00807 free_const_entry_i(ID key, rb_const_entry_t *ce, st_data_t data)
00808 {
00809     xfree(ce);
00810     return ST_CONTINUE;
00811 }
00812 
00813 void
00814 rb_free_const_table(st_table *tbl)
00815 {
00816     st_foreach(tbl, free_const_entry_i, 0);
00817     st_free_table(tbl);
00818 }
00819 
00820 static int obj_free(rb_objspace_t *, VALUE);
00821 
00822 static inline struct heaps_slot *
00823 add_slot_local_freelist(rb_objspace_t *objspace, RVALUE *p)
00824 {
00825     struct heaps_slot *slot;
00826 
00827     (void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
00828     p->as.free.flags = 0;
00829     slot = GET_HEAP_SLOT(p);
00830     p->as.free.next = slot->freelist;
00831     slot->freelist = p;
00832 
00833     return slot;
00834 }
00835 
00836 static void
00837 unlink_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
00838 {
00839     if (slot->prev)
00840         slot->prev->next = slot->next;
00841     if (slot->next)
00842         slot->next->prev = slot->prev;
00843     if (heaps == slot)
00844         heaps = slot->next;
00845     if (objspace->heap.sweep_slots == slot)
00846         objspace->heap.sweep_slots = slot->next;
00847     slot->prev = NULL;
00848     slot->next = NULL;
00849 }
00850 
00851 static void
00852 free_unused_heaps(rb_objspace_t *objspace)
00853 {
00854     size_t i, j;
00855     struct heaps_header *last = 0;
00856 
00857     for (i = j = 1; j < heaps_used; i++) {
00858         if (objspace->heap.sorted[i]->limit == 0) {
00859             struct heaps_header* h = objspace->heap.sorted[i];
00860             ((struct heaps_free_bitmap *)(h->bits))->next =
00861                 objspace->heap.free_bitmap;
00862             objspace->heap.free_bitmap = (struct heaps_free_bitmap *)h->bits;
00863             if (!last) {
00864                 last = objspace->heap.sorted[i];
00865             }
00866             else {
00867                 aligned_free(objspace->heap.sorted[i]);
00868             }
00869             heaps_used--;
00870         }
00871         else {
00872             if (i != j) {
00873                 objspace->heap.sorted[j] = objspace->heap.sorted[i];
00874             }
00875             j++;
00876         }
00877     }
00878     if (last) {
00879         if (last < heaps_freed) {
00880             aligned_free(heaps_freed);
00881             heaps_freed = last;
00882         }
00883         else {
00884             aligned_free(last);
00885         }
00886     }
00887 }
00888 static inline void
00889 make_deferred(RVALUE *p)
00890 {
00891     p->as.basic.flags = (p->as.basic.flags & ~T_MASK) | T_ZOMBIE;
00892 }
00893 
00894 static inline void
00895 make_io_deferred(RVALUE *p)
00896 {
00897     rb_io_t *fptr = p->as.file.fptr;
00898     make_deferred(p);
00899     p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize;
00900     p->as.data.data = fptr;
00901 }
00902 
00903 static int
00904 obj_free(rb_objspace_t *objspace, VALUE obj)
00905 {
00906     switch (BUILTIN_TYPE(obj)) {
00907       case T_NIL:
00908       case T_FIXNUM:
00909       case T_TRUE:
00910       case T_FALSE:
00911         rb_bug("obj_free() called for broken object");
00912         break;
00913     }
00914 
00915     if (FL_TEST(obj, FL_EXIVAR)) {
00916         rb_free_generic_ivar((VALUE)obj);
00917         FL_UNSET(obj, FL_EXIVAR);
00918     }
00919 
00920     switch (BUILTIN_TYPE(obj)) {
00921       case T_OBJECT:
00922         if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) &&
00923             RANY(obj)->as.object.as.heap.ivptr) {
00924             xfree(RANY(obj)->as.object.as.heap.ivptr);
00925         }
00926         break;
00927       case T_MODULE:
00928       case T_CLASS:
00929         rb_clear_cache_by_class((VALUE)obj);
00930         if (RCLASS_M_TBL(obj)) {
00931             rb_free_m_table(RCLASS_M_TBL(obj));
00932         }
00933         if (RCLASS_IV_TBL(obj)) {
00934             st_free_table(RCLASS_IV_TBL(obj));
00935         }
00936         if (RCLASS_CONST_TBL(obj)) {
00937             rb_free_const_table(RCLASS_CONST_TBL(obj));
00938         }
00939         if (RCLASS_IV_INDEX_TBL(obj)) {
00940             st_free_table(RCLASS_IV_INDEX_TBL(obj));
00941         }
00942         xfree(RANY(obj)->as.klass.ptr);
00943         break;
00944       case T_STRING:
00945         rb_str_free(obj);
00946         break;
00947       case T_ARRAY:
00948         rb_ary_free(obj);
00949         break;
00950       case T_HASH:
00951         if (RANY(obj)->as.hash.ntbl) {
00952             st_free_table(RANY(obj)->as.hash.ntbl);
00953         }
00954         break;
00955       case T_REGEXP:
00956         if (RANY(obj)->as.regexp.ptr) {
00957             onig_free(RANY(obj)->as.regexp.ptr);
00958         }
00959         break;
00960       case T_DATA:
00961         if (DATA_PTR(obj)) {
00962             if (RTYPEDDATA_P(obj)) {
00963                 RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree;
00964             }
00965             if (RANY(obj)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
00966                 xfree(DATA_PTR(obj));
00967             }
00968             else if (RANY(obj)->as.data.dfree) {
00969                 make_deferred(RANY(obj));
00970                 return 1;
00971             }
00972         }
00973         break;
00974       case T_MATCH:
00975         if (RANY(obj)->as.match.rmatch) {
00976             struct rmatch *rm = RANY(obj)->as.match.rmatch;
00977             onig_region_free(&rm->regs, 0);
00978             if (rm->char_offset)
00979                 xfree(rm->char_offset);
00980             xfree(rm);
00981         }
00982         break;
00983       case T_FILE:
00984         if (RANY(obj)->as.file.fptr) {
00985             make_io_deferred(RANY(obj));
00986             return 1;
00987         }
00988         break;
00989       case T_RATIONAL:
00990       case T_COMPLEX:
00991         break;
00992       case T_ICLASS:
00993         /* iClass shares table with the module */
00994         xfree(RANY(obj)->as.klass.ptr);
00995         break;
00996 
00997       case T_FLOAT:
00998         break;
00999 
01000       case T_BIGNUM:
01001         if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) {
01002             xfree(RBIGNUM_DIGITS(obj));
01003         }
01004         break;
01005       case T_NODE:
01006         switch (nd_type(obj)) {
01007           case NODE_SCOPE:
01008             if (RANY(obj)->as.node.u1.tbl) {
01009                 xfree(RANY(obj)->as.node.u1.tbl);
01010             }
01011             break;
01012           case NODE_ARGS:
01013             if (RANY(obj)->as.node.u3.args) {
01014                 xfree(RANY(obj)->as.node.u3.args);
01015             }
01016             break;
01017           case NODE_ALLOCA:
01018             xfree(RANY(obj)->as.node.u1.node);
01019             break;
01020         }
01021         break;                  /* no need to free iv_tbl */
01022 
01023       case T_STRUCT:
01024         if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
01025             RANY(obj)->as.rstruct.as.heap.ptr) {
01026             xfree(RANY(obj)->as.rstruct.as.heap.ptr);
01027         }
01028         break;
01029 
01030       default:
01031         rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE,
01032                BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags);
01033     }
01034 
01035     return 0;
01036 }
01037 
01038 void
01039 Init_heap(void)
01040 {
01041     init_heap(&rb_objspace);
01042 }
01043 
01044 typedef int each_obj_callback(void *, void *, size_t, void *);
01045 
01046 struct each_obj_args {
01047     each_obj_callback *callback;
01048     void *data;
01049 };
01050 
01051 static VALUE
01052 objspace_each_objects(VALUE arg)
01053 {
01054     size_t i;
01055     RVALUE *membase = 0;
01056     RVALUE *pstart, *pend;
01057     rb_objspace_t *objspace = &rb_objspace;
01058     struct each_obj_args *args = (struct each_obj_args *)arg;
01059     volatile VALUE v;
01060 
01061     i = 0;
01062     while (i < heaps_used) {
01063         while (0 < i && (uintptr_t)membase < (uintptr_t)objspace->heap.sorted[i-1])
01064             i--;
01065         while (i < heaps_used && (uintptr_t)objspace->heap.sorted[i] <= (uintptr_t)membase)
01066             i++;
01067         if (heaps_used <= i)
01068           break;
01069         membase = (RVALUE *)objspace->heap.sorted[i];
01070 
01071         pstart = objspace->heap.sorted[i]->start;
01072         pend = pstart + objspace->heap.sorted[i]->limit;
01073 
01074         for (; pstart != pend; pstart++) {
01075             if (pstart->as.basic.flags) {
01076                 v = (VALUE)pstart; /* acquire to save this object */
01077                 break;
01078             }
01079         }
01080         if (pstart != pend) {
01081             if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) {
01082                 break;
01083             }
01084         }
01085     }
01086     RB_GC_GUARD(v);
01087 
01088     return Qnil;
01089 }
01090 
01091 /*
01092  * rb_objspace_each_objects() is special C API to walk through
01093  * Ruby object space.  This C API is too difficult to use it.
01094  * To be frank, you should not use it. Or you need to read the
01095  * source code of this function and understand what this function does.
01096  *
01097  * 'callback' will be called several times (the number of heap slot,
01098  * at current implementation) with:
01099  *   vstart: a pointer to the first living object of the heap_slot.
01100  *   vend: a pointer to next to the valid heap_slot area.
01101  *   stride: a distance to next VALUE.
01102  *
01103  * If callback() returns non-zero, the iteration will be stopped.
01104  *
01105  * This is a sample callback code to iterate liveness objects:
01106  *
01107  *   int
01108  *   sample_callback(void *vstart, void *vend, int stride, void *data) {
01109  *     VALUE v = (VALUE)vstart;
01110  *     for (; v != (VALUE)vend; v += stride) {
01111  *       if (RBASIC(v)->flags) { // liveness check
01112  *       // do something with live object 'v'
01113  *     }
01114  *     return 0; // continue to iteration
01115  *   }
01116  *
01117  * Note: 'vstart' is not a top of heap_slot.  This point the first
01118  *       living object to grasp at least one object to avoid GC issue.
01119  *       This means that you can not walk through all Ruby object slot
01120  *       including freed object slot.
01121  *
01122  * Note: On this implementation, 'stride' is same as sizeof(RVALUE).
01123  *       However, there are possibilities to pass variable values with
01124  *       'stride' with some reasons.  You must use stride instead of
01125  *       use some constant value in the iteration.
01126  */
01127 void
01128 rb_objspace_each_objects(each_obj_callback *callback, void *data)
01129 {
01130     struct each_obj_args args;
01131     rb_objspace_t *objspace = &rb_objspace;
01132 
01133     rest_sweep(objspace);
01134     objspace->flags.dont_lazy_sweep = TRUE;
01135 
01136     args.callback = callback;
01137     args.data = data;
01138     rb_ensure(objspace_each_objects, (VALUE)&args, lazy_sweep_enable, Qnil);
01139 }
01140 
01141 struct os_each_struct {
01142     size_t num;
01143     VALUE of;
01144 };
01145 
01146 static int
01147 internal_object_p(VALUE obj)
01148 {
01149     RVALUE *p = (RVALUE *)obj;
01150 
01151     if (p->as.basic.flags) {
01152         switch (BUILTIN_TYPE(p)) {
01153           case T_NONE:
01154           case T_ICLASS:
01155           case T_NODE:
01156           case T_ZOMBIE:
01157             break;
01158           case T_CLASS:
01159             if (FL_TEST(p, FL_SINGLETON))
01160               break;
01161           default:
01162             if (!p->as.basic.klass) break;
01163             return 0;
01164         }
01165     }
01166     return 1;
01167 }
01168 
01169 int
01170 rb_objspace_internal_object_p(VALUE obj)
01171 {
01172     return internal_object_p(obj);
01173 }
01174 
01175 static int
01176 os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
01177 {
01178     struct os_each_struct *oes = (struct os_each_struct *)data;
01179     RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend;
01180 
01181     for (; p != pend; p++) {
01182         volatile VALUE v = (VALUE)p;
01183         if (!internal_object_p(v)) {
01184             if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
01185                 rb_yield(v);
01186                 oes->num++;
01187             }
01188         }
01189     }
01190 
01191     return 0;
01192 }
01193 
01194 static VALUE
01195 os_obj_of(VALUE of)
01196 {
01197     struct os_each_struct oes;
01198 
01199     oes.num = 0;
01200     oes.of = of;
01201     rb_objspace_each_objects(os_obj_of_i, &oes);
01202     return SIZET2NUM(oes.num);
01203 }
01204 
01205 /*
01206  *  call-seq:
01207  *     ObjectSpace.each_object([module]) {|obj| ... } -> fixnum
01208  *     ObjectSpace.each_object([module])              -> an_enumerator
01209  *
01210  *  Calls the block once for each living, nonimmediate object in this
01211  *  Ruby process. If <i>module</i> is specified, calls the block
01212  *  for only those classes or modules that match (or are a subclass of)
01213  *  <i>module</i>. Returns the number of objects found. Immediate
01214  *  objects (<code>Fixnum</code>s, <code>Symbol</code>s
01215  *  <code>true</code>, <code>false</code>, and <code>nil</code>) are
01216  *  never returned. In the example below, <code>each_object</code>
01217  *  returns both the numbers we defined and several constants defined in
01218  *  the <code>Math</code> module.
01219  *
01220  *  If no block is given, an enumerator is returned instead.
01221  *
01222  *     a = 102.7
01223  *     b = 95       # Won't be returned
01224  *     c = 12345678987654321
01225  *     count = ObjectSpace.each_object(Numeric) {|x| p x }
01226  *     puts "Total count: #{count}"
01227  *
01228  *  <em>produces:</em>
01229  *
01230  *     12345678987654321
01231  *     102.7
01232  *     2.71828182845905
01233  *     3.14159265358979
01234  *     2.22044604925031e-16
01235  *     1.7976931348623157e+308
01236  *     2.2250738585072e-308
01237  *     Total count: 7
01238  *
01239  */
01240 
01241 static VALUE
01242 os_each_obj(int argc, VALUE *argv, VALUE os)
01243 {
01244     VALUE of;
01245 
01246     rb_secure(4);
01247     if (argc == 0) {
01248         of = 0;
01249     }
01250     else {
01251         rb_scan_args(argc, argv, "01", &of);
01252     }
01253     RETURN_ENUMERATOR(os, 1, &of);
01254     return os_obj_of(of);
01255 }
01256 
01257 /*
01258  *  call-seq:
01259  *     ObjectSpace.undefine_finalizer(obj)
01260  *
01261  *  Removes all finalizers for <i>obj</i>.
01262  *
01263  */
01264 
01265 static VALUE
01266 undefine_final(VALUE os, VALUE obj)
01267 {
01268     return rb_undefine_final(obj);
01269 }
01270 
01271 VALUE
01272 rb_undefine_final(VALUE obj)
01273 {
01274     rb_objspace_t *objspace = &rb_objspace;
01275     st_data_t data = obj;
01276     rb_check_frozen(obj);
01277     st_delete(finalizer_table, &data, 0);
01278     FL_UNSET(obj, FL_FINALIZE);
01279     return obj;
01280 }
01281 
01282 /*
01283  *  call-seq:
01284  *     ObjectSpace.define_finalizer(obj, aProc=proc())
01285  *
01286  *  Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
01287  *  was destroyed.
01288  *
01289  */
01290 
01291 static VALUE
01292 define_final(int argc, VALUE *argv, VALUE os)
01293 {
01294     VALUE obj, block;
01295 
01296     rb_scan_args(argc, argv, "11", &obj, &block);
01297     rb_check_frozen(obj);
01298     if (argc == 1) {
01299         block = rb_block_proc();
01300     }
01301     else if (!rb_respond_to(block, rb_intern("call"))) {
01302         rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
01303                  rb_obj_classname(block));
01304     }
01305 
01306     return define_final0(obj, block);
01307 }
01308 
01309 static VALUE
01310 define_final0(VALUE obj, VALUE block)
01311 {
01312     rb_objspace_t *objspace = &rb_objspace;
01313     VALUE table;
01314     st_data_t data;
01315 
01316     if (!FL_ABLE(obj)) {
01317         rb_raise(rb_eArgError, "cannot define finalizer for %s",
01318                  rb_obj_classname(obj));
01319     }
01320     RBASIC(obj)->flags |= FL_FINALIZE;
01321 
01322     block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block);
01323     OBJ_FREEZE(block);
01324 
01325     if (st_lookup(finalizer_table, obj, &data)) {
01326         table = (VALUE)data;
01327         rb_ary_push(table, block);
01328     }
01329     else {
01330         table = rb_ary_new3(1, block);
01331         RBASIC(table)->klass = 0;
01332         st_add_direct(finalizer_table, obj, table);
01333     }
01334     return block;
01335 }
01336 
01337 VALUE
01338 rb_define_final(VALUE obj, VALUE block)
01339 {
01340     rb_check_frozen(obj);
01341     if (!rb_respond_to(block, rb_intern("call"))) {
01342         rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
01343                  rb_obj_classname(block));
01344     }
01345     return define_final0(obj, block);
01346 }
01347 
01348 void
01349 rb_gc_copy_finalizer(VALUE dest, VALUE obj)
01350 {
01351     rb_objspace_t *objspace = &rb_objspace;
01352     VALUE table;
01353     st_data_t data;
01354 
01355     if (!FL_TEST(obj, FL_FINALIZE)) return;
01356     if (st_lookup(finalizer_table, obj, &data)) {
01357         table = (VALUE)data;
01358         st_insert(finalizer_table, dest, table);
01359     }
01360     FL_SET(dest, FL_FINALIZE);
01361 }
01362 
01363 static VALUE
01364 run_single_final(VALUE arg)
01365 {
01366     VALUE *args = (VALUE *)arg;
01367     rb_eval_cmd(args[0], args[1], (int)args[2]);
01368     return Qnil;
01369 }
01370 
01371 static void
01372 run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table)
01373 {
01374     long i;
01375     int status;
01376     VALUE args[3];
01377     VALUE objid = nonspecial_obj_id(obj);
01378 
01379     if (RARRAY_LEN(table) > 0) {
01380         args[1] = rb_obj_freeze(rb_ary_new3(1, objid));
01381     }
01382     else {
01383         args[1] = 0;
01384     }
01385 
01386     args[2] = (VALUE)rb_safe_level();
01387     for (i=0; i<RARRAY_LEN(table); i++) {
01388         VALUE final = RARRAY_PTR(table)[i];
01389         args[0] = RARRAY_PTR(final)[1];
01390         args[2] = FIX2INT(RARRAY_PTR(final)[0]);
01391         status = 0;
01392         rb_protect(run_single_final, (VALUE)args, &status);
01393         if (status)
01394             rb_set_errinfo(Qnil);
01395     }
01396 }
01397 
01398 static void
01399 run_final(rb_objspace_t *objspace, VALUE obj)
01400 {
01401     RUBY_DATA_FUNC free_func = 0;
01402     st_data_t key, table;
01403 
01404     objspace->heap.final_num--;
01405 
01406     RBASIC(obj)->klass = 0;
01407 
01408     if (RTYPEDDATA_P(obj)) {
01409         free_func = RTYPEDDATA_TYPE(obj)->function.dfree;
01410     }
01411     else {
01412         free_func = RDATA(obj)->dfree;
01413     }
01414     if (free_func) {
01415         (*free_func)(DATA_PTR(obj));
01416     }
01417 
01418     key = (st_data_t)obj;
01419     if (st_delete(finalizer_table, &key, &table)) {
01420         run_finalizer(objspace, obj, (VALUE)table);
01421     }
01422 }
01423 
01424 static void
01425 finalize_list(rb_objspace_t *objspace, RVALUE *p)
01426 {
01427     while (p) {
01428         RVALUE *tmp = p->as.free.next;
01429         run_final(objspace, (VALUE)p);
01430         objspace->total_freed_object_num++;
01431         if (!FL_TEST(p, FL_SINGLETON)) { /* not freeing page */
01432             add_slot_local_freelist(objspace, p);
01433             objspace->heap.free_num++;
01434         }
01435         else {
01436             struct heaps_slot *slot = (struct heaps_slot *)(VALUE)RDATA(p)->dmark;
01437             slot->header->limit--;
01438         }
01439         p = tmp;
01440     }
01441 }
01442 
01443 static void
01444 finalize_deferred(rb_objspace_t *objspace)
01445 {
01446     RVALUE *p = deferred_final_list;
01447     deferred_final_list = 0;
01448 
01449     if (p) {
01450         finalize_list(objspace, p);
01451     }
01452 }
01453 
01454 void
01455 rb_gc_finalize_deferred(void)
01456 {
01457     rb_objspace_t *objspace = &rb_objspace;
01458     if (ATOMIC_EXCHANGE(finalizing, 1)) return;
01459     finalize_deferred(objspace);
01460     ATOMIC_SET(finalizing, 0);
01461 }
01462 
01463 struct force_finalize_list {
01464     VALUE obj;
01465     VALUE table;
01466     struct force_finalize_list *next;
01467 };
01468 
01469 static int
01470 force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
01471 {
01472     struct force_finalize_list **prev = (struct force_finalize_list **)arg;
01473     struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
01474     curr->obj = key;
01475     curr->table = val;
01476     curr->next = *prev;
01477     *prev = curr;
01478     return ST_CONTINUE;
01479 }
01480 
01481 void
01482 rb_gc_call_finalizer_at_exit(void)
01483 {
01484     rb_objspace_call_finalizer(&rb_objspace);
01485 }
01486 
01487 static void
01488 rb_objspace_call_finalizer(rb_objspace_t *objspace)
01489 {
01490     RVALUE *p, *pend;
01491     RVALUE *final_list = 0;
01492     size_t i;
01493 
01494     rest_sweep(objspace);
01495 
01496     if (ATOMIC_EXCHANGE(finalizing, 1)) return;
01497 
01498     /* run finalizers */
01499     finalize_deferred(objspace);
01500     assert(deferred_final_list == 0);
01501 
01502     /* force to run finalizer */
01503     while (finalizer_table->num_entries) {
01504         struct force_finalize_list *list = 0;
01505         st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
01506         while (list) {
01507             struct force_finalize_list *curr = list;
01508             st_data_t obj = (st_data_t)curr->obj;
01509             run_finalizer(objspace, curr->obj, curr->table);
01510             st_delete(finalizer_table, &obj, 0);
01511             list = curr->next;
01512             xfree(curr);
01513         }
01514     }
01515 
01516     /* finalizers are part of garbage collection */
01517     during_gc++;
01518 
01519     /* run data object's finalizers */
01520     for (i = 0; i < heaps_used; i++) {
01521         p = objspace->heap.sorted[i]->start; pend = p + objspace->heap.sorted[i]->limit;
01522         while (p < pend) {
01523             if (BUILTIN_TYPE(p) == T_DATA &&
01524                 DATA_PTR(p) && RANY(p)->as.data.dfree &&
01525                 !rb_obj_is_thread((VALUE)p) && !rb_obj_is_mutex((VALUE)p) &&
01526                 !rb_obj_is_fiber((VALUE)p)) {
01527                 p->as.free.flags = 0;
01528                 if (RTYPEDDATA_P(p)) {
01529                     RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree;
01530                 }
01531                 if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
01532                     xfree(DATA_PTR(p));
01533                 }
01534                 else if (RANY(p)->as.data.dfree) {
01535                     make_deferred(RANY(p));
01536                     RANY(p)->as.free.next = final_list;
01537                     final_list = p;
01538                 }
01539             }
01540             else if (BUILTIN_TYPE(p) == T_FILE) {
01541                 if (RANY(p)->as.file.fptr) {
01542                     make_io_deferred(RANY(p));
01543                     RANY(p)->as.free.next = final_list;
01544                     final_list = p;
01545                 }
01546             }
01547             p++;
01548         }
01549     }
01550     during_gc = 0;
01551     if (final_list) {
01552         finalize_list(objspace, final_list);
01553     }
01554 
01555     st_free_table(finalizer_table);
01556     finalizer_table = 0;
01557     ATOMIC_SET(finalizing, 0);
01558 }
01559 
01560 static inline int
01561 is_id_value(rb_objspace_t *objspace, VALUE ptr)
01562 {
01563     if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE;
01564     if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE;
01565     if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE;
01566     return TRUE;
01567 }
01568 
01569 static inline int
01570 is_swept_object(rb_objspace_t *objspace, VALUE ptr)
01571 {
01572     struct heaps_slot *slot = objspace->heap.sweep_slots;
01573 
01574     while (slot) {
01575         if ((VALUE)slot->header->start <= ptr && ptr < (VALUE)(slot->header->end))
01576             return FALSE;
01577         slot = slot->next;
01578     }
01579     return TRUE;
01580 }
01581 
01582 static inline int
01583 is_dead_object(rb_objspace_t *objspace, VALUE ptr)
01584 {
01585     if (!is_lazy_sweeping(objspace) || MARKED_IN_BITMAP(GET_HEAP_BITMAP(ptr), ptr))
01586         return FALSE;
01587     if (!is_swept_object(objspace, ptr))
01588         return TRUE;
01589     return FALSE;
01590 }
01591 
01592 static inline int
01593 is_live_object(rb_objspace_t *objspace, VALUE ptr)
01594 {
01595     if (BUILTIN_TYPE(ptr) == 0) return FALSE;
01596     if (RBASIC(ptr)->klass == 0) return FALSE;
01597     if (is_dead_object(objspace, ptr)) return FALSE;
01598     return TRUE;
01599 }
01600 
01601 /*
01602  *  call-seq:
01603  *     ObjectSpace._id2ref(object_id) -> an_object
01604  *
01605  *  Converts an object id to a reference to the object. May not be
01606  *  called on an object id passed as a parameter to a finalizer.
01607  *
01608  *     s = "I am a string"                    #=> "I am a string"
01609  *     r = ObjectSpace._id2ref(s.object_id)   #=> "I am a string"
01610  *     r == s                                 #=> true
01611  *
01612  */
01613 
01614 static VALUE
01615 id2ref(VALUE obj, VALUE objid)
01616 {
01617 #if SIZEOF_LONG == SIZEOF_VOIDP
01618 #define NUM2PTR(x) NUM2ULONG(x)
01619 #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
01620 #define NUM2PTR(x) NUM2ULL(x)
01621 #endif
01622     rb_objspace_t *objspace = &rb_objspace;
01623     VALUE ptr;
01624     void *p0;
01625 
01626     rb_secure(4);
01627     ptr = NUM2PTR(objid);
01628     p0 = (void *)ptr;
01629 
01630     if (ptr == Qtrue) return Qtrue;
01631     if (ptr == Qfalse) return Qfalse;
01632     if (ptr == Qnil) return Qnil;
01633     if (FIXNUM_P(ptr)) return (VALUE)ptr;
01634     if (FLONUM_P(ptr)) return (VALUE)ptr;
01635     ptr = obj_id_to_ref(objid);
01636 
01637     if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
01638         ID symid = ptr / sizeof(RVALUE);
01639         if (rb_id2name(symid) == 0)
01640             rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
01641         return ID2SYM(symid);
01642     }
01643 
01644     if (!is_id_value(objspace, ptr)) {
01645         rb_raise(rb_eRangeError, "%p is not id value", p0);
01646     }
01647     if (!is_live_object(objspace, ptr)) {
01648         rb_raise(rb_eRangeError, "%p is recycled object", p0);
01649     }
01650     return (VALUE)ptr;
01651 }
01652 
01653 /*
01654  *  Document-method: __id__
01655  *  Document-method: object_id
01656  *
01657  *  call-seq:
01658  *     obj.__id__       -> integer
01659  *     obj.object_id    -> integer
01660  *
01661  *  Returns an integer identifier for +obj+.
01662  *
01663  *  The same number will be returned on all calls to +id+ for a given object,
01664  *  and no two active objects will share an id.
01665  *
01666  *  Object#object_id is a different concept from the +:name+ notation, which
01667  *  returns the symbol id of +name+.
01668  *
01669  *  Replaces the deprecated Object#id.
01670  */
01671 
01672 /*
01673  *  call-seq:
01674  *     obj.hash    -> fixnum
01675  *
01676  *  Generates a Fixnum hash value for this object.
01677  *
01678  *  This function must have the property that <code>a.eql?(b)</code> implies
01679  *  <code>a.hash == b.hash</code>.
01680  *
01681  *  The hash value is used by Hash class.
01682  *
01683  *  Any hash value that exceeds the capacity of a Fixnum will be truncated
01684  *  before being used.
01685  */
01686 
01687 VALUE
01688 rb_obj_id(VALUE obj)
01689 {
01690     /*
01691      *                32-bit VALUE space
01692      *          MSB ------------------------ LSB
01693      *  false   00000000000000000000000000000000
01694      *  true    00000000000000000000000000000010
01695      *  nil     00000000000000000000000000000100
01696      *  undef   00000000000000000000000000000110
01697      *  symbol  ssssssssssssssssssssssss00001110
01698      *  object  oooooooooooooooooooooooooooooo00        = 0 (mod sizeof(RVALUE))
01699      *  fixnum  fffffffffffffffffffffffffffffff1
01700      *
01701      *                    object_id space
01702      *                                       LSB
01703      *  false   00000000000000000000000000000000
01704      *  true    00000000000000000000000000000010
01705      *  nil     00000000000000000000000000000100
01706      *  undef   00000000000000000000000000000110
01707      *  symbol   000SSSSSSSSSSSSSSSSSSSSSSSSSSS0        S...S % A = 4 (S...S = s...s * A + 4)
01708      *  object   oooooooooooooooooooooooooooooo0        o...o % A = 0
01709      *  fixnum  fffffffffffffffffffffffffffffff1        bignum if required
01710      *
01711      *  where A = sizeof(RVALUE)/4
01712      *
01713      *  sizeof(RVALUE) is
01714      *  20 if 32-bit, double is 4-byte aligned
01715      *  24 if 32-bit, double is 8-byte aligned
01716      *  40 if 64-bit
01717      */
01718     if (SYMBOL_P(obj)) {
01719         return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
01720     }
01721     else if (FLONUM_P(obj)) {
01722 #if SIZEOF_LONG == SIZEOF_VOIDP
01723         return LONG2NUM((SIGNED_VALUE)obj);
01724 #else
01725         return LL2NUM((SIGNED_VALUE)obj);
01726 #endif
01727     }
01728     else if (SPECIAL_CONST_P(obj)) {
01729         return LONG2NUM((SIGNED_VALUE)obj);
01730     }
01731     return nonspecial_obj_id(obj);
01732 }
01733 
01734 static int
01735 set_zero(st_data_t key, st_data_t val, st_data_t arg)
01736 {
01737     VALUE k = (VALUE)key;
01738     VALUE hash = (VALUE)arg;
01739     rb_hash_aset(hash, k, INT2FIX(0));
01740     return ST_CONTINUE;
01741 }
01742 
01743 /*
01744  *  call-seq:
01745  *     ObjectSpace.count_objects([result_hash]) -> hash
01746  *
01747  *  Counts objects for each type.
01748  *
01749  *  It returns a hash, such as:
01750  *      {
01751  *        :TOTAL=>10000,
01752  *        :FREE=>3011,
01753  *        :T_OBJECT=>6,
01754  *        :T_CLASS=>404,
01755  *        # ...
01756  *      }
01757  *
01758  *  The contents of the returned hash are implementation specific.
01759  *  It may be changed in future.
01760  *
01761  *  If the optional argument +result_hash+ is given,
01762  *  it is overwritten and returned. This is intended to avoid probe effect.
01763  *
01764  *  This method is only expected to work on C Ruby.
01765  *
01766  */
01767 
01768 static VALUE
01769 count_objects(int argc, VALUE *argv, VALUE os)
01770 {
01771     rb_objspace_t *objspace = &rb_objspace;
01772     size_t counts[T_MASK+1];
01773     size_t freed = 0;
01774     size_t total = 0;
01775     size_t i;
01776     VALUE hash;
01777 
01778     if (rb_scan_args(argc, argv, "01", &hash) == 1) {
01779         if (!RB_TYPE_P(hash, T_HASH))
01780             rb_raise(rb_eTypeError, "non-hash given");
01781     }
01782 
01783     for (i = 0; i <= T_MASK; i++) {
01784         counts[i] = 0;
01785     }
01786 
01787     for (i = 0; i < heaps_used; i++) {
01788         RVALUE *p, *pend;
01789 
01790         p = objspace->heap.sorted[i]->start; pend = p + objspace->heap.sorted[i]->limit;
01791         for (;p < pend; p++) {
01792             if (p->as.basic.flags) {
01793                 counts[BUILTIN_TYPE(p)]++;
01794             }
01795             else {
01796                 freed++;
01797             }
01798         }
01799         total += objspace->heap.sorted[i]->limit;
01800     }
01801 
01802     if (hash == Qnil) {
01803         hash = rb_hash_new();
01804     }
01805     else if (!RHASH_EMPTY_P(hash)) {
01806         st_foreach(RHASH_TBL(hash), set_zero, hash);
01807     }
01808     rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
01809     rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed));
01810 
01811     for (i = 0; i <= T_MASK; i++) {
01812         VALUE type;
01813         switch (i) {
01814 #define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break;
01815             COUNT_TYPE(T_NONE);
01816             COUNT_TYPE(T_OBJECT);
01817             COUNT_TYPE(T_CLASS);
01818             COUNT_TYPE(T_MODULE);
01819             COUNT_TYPE(T_FLOAT);
01820             COUNT_TYPE(T_STRING);
01821             COUNT_TYPE(T_REGEXP);
01822             COUNT_TYPE(T_ARRAY);
01823             COUNT_TYPE(T_HASH);
01824             COUNT_TYPE(T_STRUCT);
01825             COUNT_TYPE(T_BIGNUM);
01826             COUNT_TYPE(T_FILE);
01827             COUNT_TYPE(T_DATA);
01828             COUNT_TYPE(T_MATCH);
01829             COUNT_TYPE(T_COMPLEX);
01830             COUNT_TYPE(T_RATIONAL);
01831             COUNT_TYPE(T_NIL);
01832             COUNT_TYPE(T_TRUE);
01833             COUNT_TYPE(T_FALSE);
01834             COUNT_TYPE(T_SYMBOL);
01835             COUNT_TYPE(T_FIXNUM);
01836             COUNT_TYPE(T_UNDEF);
01837             COUNT_TYPE(T_NODE);
01838             COUNT_TYPE(T_ICLASS);
01839             COUNT_TYPE(T_ZOMBIE);
01840 #undef COUNT_TYPE
01841           default:              type = INT2NUM(i); break;
01842         }
01843         if (counts[i])
01844             rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
01845     }
01846 
01847     return hash;
01848 }
01849 
01850 
01851 
01852 /*
01853   ------------------------ Garbage Collection ------------------------
01854 */
01855 
01856 /* Sweeping */
01857 
01858 static VALUE
01859 lazy_sweep_enable(void)
01860 {
01861     rb_objspace_t *objspace = &rb_objspace;
01862 
01863     objspace->flags.dont_lazy_sweep = FALSE;
01864     return Qnil;
01865 }
01866 
01867 static void
01868 gc_clear_slot_bits(struct heaps_slot *slot)
01869 {
01870     memset(slot->bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
01871 }
01872 
01873 static size_t
01874 objspace_live_num(rb_objspace_t *objspace)
01875 {
01876     return objspace->total_allocated_object_num - objspace->total_freed_object_num;
01877 }
01878 
01879 static void
01880 slot_sweep(rb_objspace_t *objspace, struct heaps_slot *sweep_slot)
01881 {
01882     size_t empty_num = 0, freed_num = 0, final_num = 0;
01883     RVALUE *p, *pend;
01884     RVALUE *final = deferred_final_list;
01885     int deferred;
01886     uintptr_t *bits;
01887 
01888     p = sweep_slot->header->start; pend = p + sweep_slot->header->limit;
01889     bits = GET_HEAP_BITMAP(p);
01890     while (p < pend) {
01891         if ((!(MARKED_IN_BITMAP(bits, p))) && BUILTIN_TYPE(p) != T_ZOMBIE) {
01892             if (p->as.basic.flags) {
01893                 if ((deferred = obj_free(objspace, (VALUE)p)) ||
01894                     (FL_TEST(p, FL_FINALIZE))) {
01895                     if (!deferred) {
01896                         p->as.free.flags = T_ZOMBIE;
01897                         RDATA(p)->dfree = 0;
01898                     }
01899                     p->as.free.next = deferred_final_list;
01900                     deferred_final_list = p;
01901                     assert(BUILTIN_TYPE(p) == T_ZOMBIE);
01902                     final_num++;
01903                 }
01904                 else {
01905                     (void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
01906                     p->as.free.flags = 0;
01907                     p->as.free.next = sweep_slot->freelist;
01908                     sweep_slot->freelist = p;
01909                     freed_num++;
01910                 }
01911             }
01912             else {
01913                 empty_num++;
01914             }
01915         }
01916         p++;
01917     }
01918     gc_clear_slot_bits(sweep_slot);
01919     if (final_num + freed_num + empty_num == sweep_slot->header->limit &&
01920         objspace->heap.free_num > objspace->heap.do_heap_free) {
01921         RVALUE *pp;
01922 
01923         for (pp = deferred_final_list; pp != final; pp = pp->as.free.next) {
01924             RDATA(pp)->dmark = (void (*)(void *))(VALUE)sweep_slot;
01925             pp->as.free.flags |= FL_SINGLETON; /* freeing page mark */
01926         }
01927         sweep_slot->header->limit = final_num;
01928         unlink_heap_slot(objspace, sweep_slot);
01929     }
01930     else {
01931         if (freed_num + empty_num > 0) {
01932             link_free_heap_slot(objspace, sweep_slot);
01933         }
01934         else {
01935             sweep_slot->free_next = NULL;
01936         }
01937         objspace->heap.free_num += freed_num + empty_num;
01938     }
01939     objspace->total_freed_object_num += freed_num;
01940     objspace->heap.final_num += final_num;
01941 
01942     if (deferred_final_list && !finalizing) {
01943         rb_thread_t *th = GET_THREAD();
01944         if (th) {
01945             RUBY_VM_SET_FINALIZER_INTERRUPT(th);
01946         }
01947     }
01948 }
01949 
01950 static int
01951 ready_to_gc(rb_objspace_t *objspace)
01952 {
01953     if (dont_gc || during_gc) {
01954         if (!has_free_object) {
01955             if (!heaps_increment(objspace)) {
01956                 set_heaps_increment(objspace);
01957                 heaps_increment(objspace);
01958             }
01959         }
01960         return FALSE;
01961     }
01962     return TRUE;
01963 }
01964 
01965 static void
01966 before_gc_sweep(rb_objspace_t *objspace)
01967 {
01968     objspace->heap.do_heap_free = (size_t)((heaps_used * HEAP_OBJ_LIMIT) * 0.65);
01969     objspace->heap.free_min = (size_t)((heaps_used * HEAP_OBJ_LIMIT)  * 0.2);
01970     if (objspace->heap.free_min < initial_free_min) {
01971         objspace->heap.free_min = initial_free_min;
01972         if (objspace->heap.do_heap_free < initial_free_min)
01973             objspace->heap.do_heap_free = initial_free_min;
01974     }
01975     objspace->heap.sweep_slots = heaps;
01976     objspace->heap.free_num = 0;
01977     objspace->heap.free_slots = NULL;
01978 
01979     /* sweep unlinked method entries */
01980     if (GET_VM()->unlinked_method_entry_list) {
01981         rb_sweep_method_entry(GET_VM());
01982     }
01983 }
01984 
01985 static void
01986 after_gc_sweep(rb_objspace_t *objspace)
01987 {
01988     size_t inc;
01989 
01990     gc_prof_set_malloc_info(objspace);
01991     if (objspace->heap.free_num < objspace->heap.free_min) {
01992         set_heaps_increment(objspace);
01993         heaps_increment(objspace);
01994     }
01995 
01996     inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0);
01997     if (inc > malloc_limit) {
01998         malloc_limit +=
01999           (size_t)((inc - malloc_limit) * (double)objspace->heap.marked_num / (heaps_used * HEAP_OBJ_LIMIT));
02000         if (malloc_limit < initial_malloc_limit) malloc_limit = initial_malloc_limit;
02001     }
02002 
02003     free_unused_heaps(objspace);
02004 }
02005 
02006 static int
02007 lazy_sweep(rb_objspace_t *objspace)
02008 {
02009     struct heaps_slot *next;
02010 
02011     heaps_increment(objspace);
02012     while (objspace->heap.sweep_slots) {
02013         next = objspace->heap.sweep_slots->next;
02014         slot_sweep(objspace, objspace->heap.sweep_slots);
02015         objspace->heap.sweep_slots = next;
02016         if (has_free_object) {
02017             during_gc = 0;
02018             return TRUE;
02019         }
02020     }
02021     return FALSE;
02022 }
02023 
02024 static void
02025 rest_sweep(rb_objspace_t *objspace)
02026 {
02027     if (objspace->heap.sweep_slots) {
02028         while (objspace->heap.sweep_slots) {
02029             lazy_sweep(objspace);
02030         }
02031         after_gc_sweep(objspace);
02032     }
02033 }
02034 
02035 static void gc_marks(rb_objspace_t *objspace);
02036 
02037 static int
02038 gc_prepare_free_objects(rb_objspace_t *objspace)
02039 {
02040     int res;
02041 
02042     if (objspace->flags.dont_lazy_sweep)
02043         return garbage_collect(objspace);
02044 
02045 
02046     if (!ready_to_gc(objspace)) return TRUE;
02047 
02048     during_gc++;
02049     gc_prof_timer_start(objspace);
02050     gc_prof_sweep_timer_start(objspace);
02051 
02052     if (objspace->heap.sweep_slots) {
02053         res = lazy_sweep(objspace);
02054         if (res) {
02055             gc_prof_sweep_timer_stop(objspace);
02056             gc_prof_set_malloc_info(objspace);
02057             gc_prof_timer_stop(objspace, Qfalse);
02058             return res;
02059         }
02060         after_gc_sweep(objspace);
02061     }
02062     else {
02063         if (heaps_increment(objspace)) {
02064             during_gc = 0;
02065             return TRUE;
02066         }
02067     }
02068 
02069     gc_marks(objspace);
02070 
02071     before_gc_sweep(objspace);
02072     if (objspace->heap.free_min > (heaps_used * HEAP_OBJ_LIMIT - objspace->heap.marked_num)) {
02073         set_heaps_increment(objspace);
02074     }
02075 
02076     gc_prof_sweep_timer_start(objspace);
02077     if (!(res = lazy_sweep(objspace))) {
02078         after_gc_sweep(objspace);
02079         if (has_free_object) {
02080             res = TRUE;
02081             during_gc = 0;
02082         }
02083     }
02084     gc_prof_sweep_timer_stop(objspace);
02085 
02086     gc_prof_timer_stop(objspace, Qtrue);
02087     return res;
02088 }
02089 
02090 static void
02091 gc_sweep(rb_objspace_t *objspace)
02092 {
02093     struct heaps_slot *next;
02094 
02095     before_gc_sweep(objspace);
02096 
02097     while (objspace->heap.sweep_slots) {
02098         next = objspace->heap.sweep_slots->next;
02099         slot_sweep(objspace, objspace->heap.sweep_slots);
02100         objspace->heap.sweep_slots = next;
02101     }
02102 
02103     after_gc_sweep(objspace);
02104 
02105     during_gc = 0;
02106 }
02107 
02108 /* Marking stack */
02109 
02110 static void push_mark_stack(mark_stack_t *, VALUE);
02111 static int pop_mark_stack(mark_stack_t *, VALUE *);
02112 static void shrink_stack_chunk_cache(mark_stack_t *stack);
02113 
02114 static stack_chunk_t *
02115 stack_chunk_alloc(void)
02116 {
02117     stack_chunk_t *res;
02118 
02119     res = malloc(sizeof(stack_chunk_t));
02120     if (!res)
02121         rb_memerror();
02122 
02123     return res;
02124 }
02125 
02126 static inline int
02127 is_mark_stask_empty(mark_stack_t *stack)
02128 {
02129     return stack->chunk == NULL;
02130 }
02131 
02132 static void
02133 add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk)
02134 {
02135     chunk->next = stack->cache;
02136     stack->cache = chunk;
02137     stack->cache_size++;
02138 }
02139 
02140 static void
02141 shrink_stack_chunk_cache(mark_stack_t *stack)
02142 {
02143     stack_chunk_t *chunk;
02144 
02145     if (stack->unused_cache_size > (stack->cache_size/2)) {
02146         chunk = stack->cache;
02147         stack->cache = stack->cache->next;
02148         stack->cache_size--;
02149         free(chunk);
02150     }
02151     stack->unused_cache_size = stack->cache_size;
02152 }
02153 
02154 static void
02155 push_mark_stack_chunk(mark_stack_t *stack)
02156 {
02157     stack_chunk_t *next;
02158 
02159     assert(stack->index == stack->limit);
02160     if (stack->cache_size > 0) {
02161         next = stack->cache;
02162         stack->cache = stack->cache->next;
02163         stack->cache_size--;
02164         if (stack->unused_cache_size > stack->cache_size)
02165             stack->unused_cache_size = stack->cache_size;
02166     }
02167     else {
02168         next = stack_chunk_alloc();
02169     }
02170     next->next = stack->chunk;
02171     stack->chunk = next;
02172     stack->index = 0;
02173 }
02174 
02175 static void
02176 pop_mark_stack_chunk(mark_stack_t *stack)
02177 {
02178     stack_chunk_t *prev;
02179 
02180     prev = stack->chunk->next;
02181     assert(stack->index == 0);
02182     add_stack_chunk_cache(stack, stack->chunk);
02183     stack->chunk = prev;
02184     stack->index = stack->limit;
02185 }
02186 
02187 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
02188 static void
02189 free_stack_chunks(mark_stack_t *stack)
02190 {
02191     stack_chunk_t *chunk = stack->chunk;
02192     stack_chunk_t *next = NULL;
02193 
02194     while (chunk != NULL) {
02195         next = chunk->next;
02196         free(chunk);
02197         chunk = next;
02198     }
02199 }
02200 #endif
02201 
02202 static void
02203 push_mark_stack(mark_stack_t *stack, VALUE data)
02204 {
02205     if (stack->index == stack->limit) {
02206         push_mark_stack_chunk(stack);
02207     }
02208     stack->chunk->data[stack->index++] = data;
02209 }
02210 
02211 static int
02212 pop_mark_stack(mark_stack_t *stack, VALUE *data)
02213 {
02214     if (is_mark_stask_empty(stack)) {
02215         return FALSE;
02216     }
02217     if (stack->index == 1) {
02218         *data = stack->chunk->data[--stack->index];
02219         pop_mark_stack_chunk(stack);
02220         return TRUE;
02221     }
02222     *data = stack->chunk->data[--stack->index];
02223     return TRUE;
02224 }
02225 
02226 static void
02227 init_mark_stack(mark_stack_t *stack)
02228 {
02229     int i;
02230 
02231     push_mark_stack_chunk(stack);
02232     stack->limit = STACK_CHUNK_SIZE;
02233 
02234     for (i=0; i < 4; i++) {
02235         add_stack_chunk_cache(stack, stack_chunk_alloc());
02236     }
02237     stack->unused_cache_size = stack->cache_size;
02238 }
02239 
02240 
02241 /* Marking */
02242 
02243 #define MARK_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] = bits[BITMAP_INDEX(p)] | ((uintptr_t)1 << BITMAP_OFFSET(p)))
02244 
02245 
02246 #ifdef __ia64
02247 #define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp())
02248 #else
02249 #define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end)
02250 #endif
02251 
02252 #define STACK_START (th->machine_stack_start)
02253 #define STACK_END (th->machine_stack_end)
02254 #define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE))
02255 
02256 #if STACK_GROW_DIRECTION < 0
02257 # define STACK_LENGTH  (size_t)(STACK_START - STACK_END)
02258 #elif STACK_GROW_DIRECTION > 0
02259 # define STACK_LENGTH  (size_t)(STACK_END - STACK_START + 1)
02260 #else
02261 # define STACK_LENGTH  ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
02262                         : (size_t)(STACK_END - STACK_START + 1))
02263 #endif
02264 #if !STACK_GROW_DIRECTION
02265 int ruby_stack_grow_direction;
02266 int
02267 ruby_get_stack_grow_direction(volatile VALUE *addr)
02268 {
02269     VALUE *end;
02270     SET_MACHINE_STACK_END(&end);
02271 
02272     if (end > addr) return ruby_stack_grow_direction = 1;
02273     return ruby_stack_grow_direction = -1;
02274 }
02275 #endif
02276 
02277 size_t
02278 ruby_stack_length(VALUE **p)
02279 {
02280     rb_thread_t *th = GET_THREAD();
02281     SET_STACK_END;
02282     if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
02283     return STACK_LENGTH;
02284 }
02285 
02286 #if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK))
02287 static int
02288 stack_check(int water_mark)
02289 {
02290     int ret;
02291     rb_thread_t *th = GET_THREAD();
02292     SET_STACK_END;
02293     ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark;
02294 #ifdef __ia64
02295     if (!ret) {
02296         ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start >
02297               th->machine_register_stack_maxsize/sizeof(VALUE) - water_mark;
02298     }
02299 #endif
02300     return ret;
02301 }
02302 #endif
02303 
02304 #define STACKFRAME_FOR_CALL_CFUNC 512
02305 
02306 int
02307 ruby_stack_check(void)
02308 {
02309 #if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)
02310     return 0;
02311 #else
02312     return stack_check(STACKFRAME_FOR_CALL_CFUNC);
02313 #endif
02314 }
02315 
02316 static void
02317 mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n)
02318 {
02319     VALUE v;
02320     while (n--) {
02321         v = *x;
02322         (void)VALGRIND_MAKE_MEM_DEFINED(&v, sizeof(v));
02323         if (is_pointer_to_heap(objspace, (void *)v)) {
02324             gc_mark(objspace, v);
02325         }
02326         x++;
02327     }
02328 }
02329 
02330 static void
02331 gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end)
02332 {
02333     long n;
02334 
02335     if (end <= start) return;
02336     n = end - start;
02337     mark_locations_array(objspace, start, n);
02338 }
02339 
02340 void
02341 rb_gc_mark_locations(VALUE *start, VALUE *end)
02342 {
02343     gc_mark_locations(&rb_objspace, start, end);
02344 }
02345 
02346 #define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end))
02347 
02348 struct mark_tbl_arg {
02349     rb_objspace_t *objspace;
02350 };
02351 
02352 static int
02353 mark_entry(st_data_t key, st_data_t value, st_data_t data)
02354 {
02355     struct mark_tbl_arg *arg = (void*)data;
02356     gc_mark(arg->objspace, (VALUE)value);
02357     return ST_CONTINUE;
02358 }
02359 
02360 static void
02361 mark_tbl(rb_objspace_t *objspace, st_table *tbl)
02362 {
02363     struct mark_tbl_arg arg;
02364     if (!tbl || tbl->num_entries == 0) return;
02365     arg.objspace = objspace;
02366     st_foreach(tbl, mark_entry, (st_data_t)&arg);
02367 }
02368 
02369 static int
02370 mark_key(st_data_t key, st_data_t value, st_data_t data)
02371 {
02372     struct mark_tbl_arg *arg = (void*)data;
02373     gc_mark(arg->objspace, (VALUE)key);
02374     return ST_CONTINUE;
02375 }
02376 
02377 static void
02378 mark_set(rb_objspace_t *objspace, st_table *tbl)
02379 {
02380     struct mark_tbl_arg arg;
02381     if (!tbl) return;
02382     arg.objspace = objspace;
02383     st_foreach(tbl, mark_key, (st_data_t)&arg);
02384 }
02385 
02386 void
02387 rb_mark_set(st_table *tbl)
02388 {
02389     mark_set(&rb_objspace, tbl);
02390 }
02391 
02392 static int
02393 mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
02394 {
02395     struct mark_tbl_arg *arg = (void*)data;
02396     gc_mark(arg->objspace, (VALUE)key);
02397     gc_mark(arg->objspace, (VALUE)value);
02398     return ST_CONTINUE;
02399 }
02400 
02401 static void
02402 mark_hash(rb_objspace_t *objspace, st_table *tbl)
02403 {
02404     struct mark_tbl_arg arg;
02405     if (!tbl) return;
02406     arg.objspace = objspace;
02407     st_foreach(tbl, mark_keyvalue, (st_data_t)&arg);
02408 }
02409 
02410 void
02411 rb_mark_hash(st_table *tbl)
02412 {
02413     mark_hash(&rb_objspace, tbl);
02414 }
02415 
02416 static void
02417 mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me)
02418 {
02419     const rb_method_definition_t *def = me->def;
02420 
02421     gc_mark(objspace, me->klass);
02422   again:
02423     if (!def) return;
02424     switch (def->type) {
02425       case VM_METHOD_TYPE_ISEQ:
02426         gc_mark(objspace, def->body.iseq->self);
02427         break;
02428       case VM_METHOD_TYPE_BMETHOD:
02429         gc_mark(objspace, def->body.proc);
02430         break;
02431       case VM_METHOD_TYPE_ATTRSET:
02432       case VM_METHOD_TYPE_IVAR:
02433         gc_mark(objspace, def->body.attr.location);
02434         break;
02435       case VM_METHOD_TYPE_REFINED:
02436         if (def->body.orig_me) {
02437             def = def->body.orig_me->def;
02438             goto again;
02439         }
02440         break;
02441       default:
02442         break; /* ignore */
02443     }
02444 }
02445 
02446 void
02447 rb_mark_method_entry(const rb_method_entry_t *me)
02448 {
02449     mark_method_entry(&rb_objspace, me);
02450 }
02451 
02452 static int
02453 mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data)
02454 {
02455     struct mark_tbl_arg *arg = (void*)data;
02456     mark_method_entry(arg->objspace, me);
02457     return ST_CONTINUE;
02458 }
02459 
02460 static void
02461 mark_m_tbl(rb_objspace_t *objspace, st_table *tbl)
02462 {
02463     struct mark_tbl_arg arg;
02464     if (!tbl) return;
02465     arg.objspace = objspace;
02466     st_foreach(tbl, mark_method_entry_i, (st_data_t)&arg);
02467 }
02468 
02469 static int
02470 mark_const_entry_i(ID key, const rb_const_entry_t *ce, st_data_t data)
02471 {
02472     struct mark_tbl_arg *arg = (void*)data;
02473     gc_mark(arg->objspace, ce->value);
02474     gc_mark(arg->objspace, ce->file);
02475     return ST_CONTINUE;
02476 }
02477 
02478 static void
02479 mark_const_tbl(rb_objspace_t *objspace, st_table *tbl)
02480 {
02481     struct mark_tbl_arg arg;
02482     if (!tbl) return;
02483     arg.objspace = objspace;
02484     st_foreach(tbl, mark_const_entry_i, (st_data_t)&arg);
02485 }
02486 
02487 #if STACK_GROW_DIRECTION < 0
02488 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
02489 #elif STACK_GROW_DIRECTION > 0
02490 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
02491 #else
02492 #define GET_STACK_BOUNDS(start, end, appendix) \
02493     ((STACK_END < STACK_START) ? \
02494      ((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
02495 #endif
02496 
02497 #define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
02498 
02499 static void
02500 mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th)
02501 {
02502     union {
02503         rb_jmp_buf j;
02504         VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)];
02505     } save_regs_gc_mark;
02506     VALUE *stack_start, *stack_end;
02507 
02508     FLUSH_REGISTER_WINDOWS;
02509     /* This assumes that all registers are saved into the jmp_buf (and stack) */
02510     rb_setjmp(save_regs_gc_mark.j);
02511 
02512     SET_STACK_END;
02513     GET_STACK_BOUNDS(stack_start, stack_end, 1);
02514 
02515     mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v));
02516 
02517     rb_gc_mark_locations(stack_start, stack_end);
02518 #ifdef __ia64
02519     rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
02520 #endif
02521 #if defined(__mc68000__)
02522     mark_locations_array(objspace, (VALUE*)((char*)STACK_END + 2),
02523                          (STACK_START - STACK_END));
02524 #endif
02525 }
02526 
02527 void
02528 rb_gc_mark_machine_stack(rb_thread_t *th)
02529 {
02530     rb_objspace_t *objspace = &rb_objspace;
02531     VALUE *stack_start, *stack_end;
02532 
02533     GET_STACK_BOUNDS(stack_start, stack_end, 0);
02534     rb_gc_mark_locations(stack_start, stack_end);
02535 #ifdef __ia64
02536     rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
02537 #endif
02538 }
02539 
02540 void
02541 rb_mark_tbl(st_table *tbl)
02542 {
02543     mark_tbl(&rb_objspace, tbl);
02544 }
02545 
02546 void
02547 rb_gc_mark_maybe(VALUE obj)
02548 {
02549     if (is_pointer_to_heap(&rb_objspace, (void *)obj)) {
02550         gc_mark(&rb_objspace, obj);
02551     }
02552 }
02553 
02554 static int
02555 gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr)
02556 {
02557     register uintptr_t *bits = GET_HEAP_BITMAP(ptr);
02558     if (MARKED_IN_BITMAP(bits, ptr)) return 0;
02559     MARK_IN_BITMAP(bits, ptr);
02560     objspace->heap.marked_num++;
02561     return 1;
02562 }
02563 
02564 static int
02565 markable_object_p(rb_objspace_t *objspace, VALUE ptr)
02566 {
02567     register RVALUE *obj = RANY(ptr);
02568 
02569     if (rb_special_const_p(ptr)) return 0; /* special const not marked */
02570     if (obj->as.basic.flags == 0) return 0 ;       /* free cell */
02571 
02572     return 1;
02573 }
02574 
02575 int
02576 rb_objspace_markable_object_p(VALUE obj)
02577 {
02578     return markable_object_p(/* now it doesn't use &rb_objspace */ 0, obj);
02579 }
02580 
02581 static void
02582 gc_mark(rb_objspace_t *objspace, VALUE ptr)
02583 {
02584     if (!markable_object_p(objspace, ptr)) {
02585         return;
02586     }
02587 
02588     if (LIKELY(objspace->mark_func_data == 0)) {
02589         if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */
02590         push_mark_stack(&objspace->mark_stack, ptr);
02591     }
02592     else {
02593         objspace->mark_func_data->mark_func(ptr, objspace->mark_func_data->data);
02594     }
02595 }
02596 
02597 void
02598 rb_gc_mark(VALUE ptr)
02599 {
02600     gc_mark(&rb_objspace, ptr);
02601 }
02602 
02603 static void
02604 gc_mark_children(rb_objspace_t *objspace, VALUE ptr)
02605 {
02606     register RVALUE *obj = RANY(ptr);
02607 
02608     goto marking;               /* skip */
02609 
02610   again:
02611     if (LIKELY(objspace->mark_func_data == 0)) {
02612         obj = RANY(ptr);
02613         if (!markable_object_p(objspace, ptr)) return;
02614         if (!gc_mark_ptr(objspace, ptr)) return;  /* already marked */
02615     }
02616     else {
02617         gc_mark(objspace, ptr);
02618         return;
02619     }
02620 
02621   marking:
02622     if (FL_TEST(obj, FL_EXIVAR)) {
02623         rb_mark_generic_ivar(ptr);
02624     }
02625 
02626     switch (BUILTIN_TYPE(obj)) {
02627       case T_NIL:
02628       case T_FIXNUM:
02629         rb_bug("rb_gc_mark() called for broken object");
02630         break;
02631 
02632       case T_NODE:
02633         switch (nd_type(obj)) {
02634           case NODE_IF:         /* 1,2,3 */
02635           case NODE_FOR:
02636           case NODE_ITER:
02637           case NODE_WHEN:
02638           case NODE_MASGN:
02639           case NODE_RESCUE:
02640           case NODE_RESBODY:
02641           case NODE_CLASS:
02642           case NODE_BLOCK_PASS:
02643             gc_mark(objspace, (VALUE)obj->as.node.u2.node);
02644             /* fall through */
02645           case NODE_BLOCK:      /* 1,3 */
02646           case NODE_ARRAY:
02647           case NODE_DSTR:
02648           case NODE_DXSTR:
02649           case NODE_DREGX:
02650           case NODE_DREGX_ONCE:
02651           case NODE_ENSURE:
02652           case NODE_CALL:
02653           case NODE_DEFS:
02654           case NODE_OP_ASGN1:
02655             gc_mark(objspace, (VALUE)obj->as.node.u1.node);
02656             /* fall through */
02657           case NODE_SUPER:      /* 3 */
02658           case NODE_FCALL:
02659           case NODE_DEFN:
02660           case NODE_ARGS_AUX:
02661             ptr = (VALUE)obj->as.node.u3.node;
02662             goto again;
02663 
02664           case NODE_WHILE:      /* 1,2 */
02665           case NODE_UNTIL:
02666           case NODE_AND:
02667           case NODE_OR:
02668           case NODE_CASE:
02669           case NODE_SCLASS:
02670           case NODE_DOT2:
02671           case NODE_DOT3:
02672           case NODE_FLIP2:
02673           case NODE_FLIP3:
02674           case NODE_MATCH2:
02675           case NODE_MATCH3:
02676           case NODE_OP_ASGN_OR:
02677           case NODE_OP_ASGN_AND:
02678           case NODE_MODULE:
02679           case NODE_ALIAS:
02680           case NODE_VALIAS:
02681           case NODE_ARGSCAT:
02682             gc_mark(objspace, (VALUE)obj->as.node.u1.node);
02683             /* fall through */
02684           case NODE_GASGN:      /* 2 */
02685           case NODE_LASGN:
02686           case NODE_DASGN:
02687           case NODE_DASGN_CURR:
02688           case NODE_IASGN:
02689           case NODE_IASGN2:
02690           case NODE_CVASGN:
02691           case NODE_COLON3:
02692           case NODE_OPT_N:
02693           case NODE_EVSTR:
02694           case NODE_UNDEF:
02695           case NODE_POSTEXE:
02696             ptr = (VALUE)obj->as.node.u2.node;
02697             goto again;
02698 
02699           case NODE_HASH:       /* 1 */
02700           case NODE_LIT:
02701           case NODE_STR:
02702           case NODE_XSTR:
02703           case NODE_DEFINED:
02704           case NODE_MATCH:
02705           case NODE_RETURN:
02706           case NODE_BREAK:
02707           case NODE_NEXT:
02708           case NODE_YIELD:
02709           case NODE_COLON2:
02710           case NODE_SPLAT:
02711           case NODE_TO_ARY:
02712             ptr = (VALUE)obj->as.node.u1.node;
02713             goto again;
02714 
02715           case NODE_SCOPE:      /* 2,3 */
02716           case NODE_CDECL:
02717           case NODE_OPT_ARG:
02718             gc_mark(objspace, (VALUE)obj->as.node.u3.node);
02719             ptr = (VALUE)obj->as.node.u2.node;
02720             goto again;
02721 
02722           case NODE_ARGS:       /* custom */
02723             {
02724                 struct rb_args_info *args = obj->as.node.u3.args;
02725                 if (args) {
02726                     if (args->pre_init)    gc_mark(objspace, (VALUE)args->pre_init);
02727                     if (args->post_init)   gc_mark(objspace, (VALUE)args->post_init);
02728                     if (args->opt_args)    gc_mark(objspace, (VALUE)args->opt_args);
02729                     if (args->kw_args)     gc_mark(objspace, (VALUE)args->kw_args);
02730                     if (args->kw_rest_arg) gc_mark(objspace, (VALUE)args->kw_rest_arg);
02731                 }
02732             }
02733             ptr = (VALUE)obj->as.node.u2.node;
02734             goto again;
02735 
02736           case NODE_ZARRAY:     /* - */
02737           case NODE_ZSUPER:
02738           case NODE_VCALL:
02739           case NODE_GVAR:
02740           case NODE_LVAR:
02741           case NODE_DVAR:
02742           case NODE_IVAR:
02743           case NODE_CVAR:
02744           case NODE_NTH_REF:
02745           case NODE_BACK_REF:
02746           case NODE_REDO:
02747           case NODE_RETRY:
02748           case NODE_SELF:
02749           case NODE_NIL:
02750           case NODE_TRUE:
02751           case NODE_FALSE:
02752           case NODE_ERRINFO:
02753           case NODE_BLOCK_ARG:
02754             break;
02755           case NODE_ALLOCA:
02756             mark_locations_array(objspace,
02757                                  (VALUE*)obj->as.node.u1.value,
02758                                  obj->as.node.u3.cnt);
02759             gc_mark(objspace, (VALUE)obj->as.node.u2.node);
02760             break;
02761 
02762           case NODE_CREF:
02763             gc_mark(objspace, obj->as.node.nd_refinements);
02764             gc_mark(objspace, (VALUE)obj->as.node.u1.node);
02765             ptr = (VALUE)obj->as.node.u3.node;
02766             goto again;
02767 
02768           default:              /* unlisted NODE */
02769             if (is_pointer_to_heap(objspace, obj->as.node.u1.node)) {
02770                 gc_mark(objspace, (VALUE)obj->as.node.u1.node);
02771             }
02772             if (is_pointer_to_heap(objspace, obj->as.node.u2.node)) {
02773                 gc_mark(objspace, (VALUE)obj->as.node.u2.node);
02774             }
02775             if (is_pointer_to_heap(objspace, obj->as.node.u3.node)) {
02776                 gc_mark(objspace, (VALUE)obj->as.node.u3.node);
02777             }
02778         }
02779         return;                 /* no need to mark class. */
02780     }
02781 
02782     gc_mark(objspace, obj->as.basic.klass);
02783     switch (BUILTIN_TYPE(obj)) {
02784       case T_ICLASS:
02785       case T_CLASS:
02786       case T_MODULE:
02787         mark_m_tbl(objspace, RCLASS_M_TBL(obj));
02788         if (!RCLASS_EXT(obj)) break;
02789         mark_tbl(objspace, RCLASS_IV_TBL(obj));
02790         mark_const_tbl(objspace, RCLASS_CONST_TBL(obj));
02791         ptr = RCLASS_SUPER(obj);
02792         goto again;
02793 
02794       case T_ARRAY:
02795         if (FL_TEST(obj, ELTS_SHARED)) {
02796             ptr = obj->as.array.as.heap.aux.shared;
02797             goto again;
02798         }
02799         else {
02800             long i, len = RARRAY_LEN(obj);
02801             VALUE *ptr = RARRAY_PTR(obj);
02802             for (i=0; i < len; i++) {
02803                 gc_mark(objspace, *ptr++);
02804             }
02805         }
02806         break;
02807 
02808       case T_HASH:
02809         mark_hash(objspace, obj->as.hash.ntbl);
02810         ptr = obj->as.hash.ifnone;
02811         goto again;
02812 
02813       case T_STRING:
02814 #define STR_ASSOC FL_USER3   /* copied from string.c */
02815         if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) {
02816             ptr = obj->as.string.as.heap.aux.shared;
02817             goto again;
02818         }
02819         break;
02820 
02821       case T_DATA:
02822         if (RTYPEDDATA_P(obj)) {
02823             RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark;
02824             if (mark_func) (*mark_func)(DATA_PTR(obj));
02825         }
02826         else {
02827             if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
02828         }
02829         break;
02830 
02831       case T_OBJECT:
02832         {
02833             long i, len = ROBJECT_NUMIV(obj);
02834             VALUE *ptr = ROBJECT_IVPTR(obj);
02835             for (i  = 0; i < len; i++) {
02836                 gc_mark(objspace, *ptr++);
02837             }
02838         }
02839         break;
02840 
02841       case T_FILE:
02842         if (obj->as.file.fptr) {
02843             gc_mark(objspace, obj->as.file.fptr->pathv);
02844             gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing);
02845             gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat);
02846             gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts);
02847             gc_mark(objspace, obj->as.file.fptr->encs.ecopts);
02848             gc_mark(objspace, obj->as.file.fptr->write_lock);
02849         }
02850         break;
02851 
02852       case T_REGEXP:
02853         ptr = obj->as.regexp.src;
02854         goto again;
02855 
02856       case T_FLOAT:
02857       case T_BIGNUM:
02858       case T_ZOMBIE:
02859         break;
02860 
02861       case T_MATCH:
02862         gc_mark(objspace, obj->as.match.regexp);
02863         if (obj->as.match.str) {
02864             ptr = obj->as.match.str;
02865             goto again;
02866         }
02867         break;
02868 
02869       case T_RATIONAL:
02870         gc_mark(objspace, obj->as.rational.num);
02871         ptr = obj->as.rational.den;
02872         goto again;
02873 
02874       case T_COMPLEX:
02875         gc_mark(objspace, obj->as.complex.real);
02876         ptr = obj->as.complex.imag;
02877         goto again;
02878 
02879       case T_STRUCT:
02880         {
02881             long len = RSTRUCT_LEN(obj);
02882             VALUE *ptr = RSTRUCT_PTR(obj);
02883 
02884             while (len--) {
02885                 gc_mark(objspace, *ptr++);
02886             }
02887         }
02888         break;
02889 
02890       default:
02891         rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
02892                BUILTIN_TYPE(obj), (void *)obj,
02893                is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object");
02894     }
02895 }
02896 
02897 static void
02898 gc_mark_stacked_objects(rb_objspace_t *objspace)
02899 {
02900     mark_stack_t *mstack = &objspace->mark_stack;
02901     VALUE obj = 0;
02902 
02903     if (!mstack->index) return;
02904     while (pop_mark_stack(mstack, &obj)) {
02905         gc_mark_children(objspace, obj);
02906     }
02907     shrink_stack_chunk_cache(mstack);
02908 }
02909 
02910 static void
02911 gc_marks(rb_objspace_t *objspace)
02912 {
02913     struct gc_list *list;
02914     rb_thread_t *th = GET_THREAD();
02915     struct mark_func_data_struct *prev_mark_func_data;
02916 
02917     prev_mark_func_data = objspace->mark_func_data;
02918     objspace->mark_func_data = 0;
02919 
02920     gc_prof_mark_timer_start(objspace);
02921     objspace->heap.marked_num = 0;
02922     objspace->count++;
02923 
02924     SET_STACK_END;
02925 
02926     th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm);
02927 
02928     mark_tbl(objspace, finalizer_table);
02929     mark_current_machine_context(objspace, th);
02930 
02931     rb_gc_mark_symbols();
02932     rb_gc_mark_encodings();
02933 
02934     /* mark protected global variables */
02935     for (list = global_List; list; list = list->next) {
02936         rb_gc_mark_maybe(*list->varptr);
02937     }
02938     rb_mark_end_proc();
02939     rb_gc_mark_global_tbl();
02940 
02941     mark_tbl(objspace, rb_class_tbl);
02942 
02943     /* mark generic instance variables for special constants */
02944     rb_mark_generic_ivar_tbl();
02945 
02946     rb_gc_mark_parser();
02947 
02948     rb_gc_mark_unlinked_live_method_entries(th->vm);
02949 
02950     /* marking-loop */
02951     gc_mark_stacked_objects(objspace);
02952 
02953     gc_prof_mark_timer_stop(objspace);
02954 
02955     objspace->mark_func_data = prev_mark_func_data;
02956 }
02957 
02958 /* GC */
02959 
02960 void
02961 rb_gc_force_recycle(VALUE p)
02962 {
02963     rb_objspace_t *objspace = &rb_objspace;
02964     struct heaps_slot *slot;
02965 
02966     objspace->total_freed_object_num++;
02967     if (MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p)) {
02968         add_slot_local_freelist(objspace, (RVALUE *)p);
02969     }
02970     else {
02971         objspace->heap.free_num++;
02972         slot = add_slot_local_freelist(objspace, (RVALUE *)p);
02973         if (slot->free_next == NULL) {
02974             link_free_heap_slot(objspace, slot);
02975         }
02976     }
02977 }
02978 
02979 void
02980 rb_gc_register_mark_object(VALUE obj)
02981 {
02982     VALUE ary = GET_THREAD()->vm->mark_object_ary;
02983     rb_ary_push(ary, obj);
02984 }
02985 
02986 void
02987 rb_gc_register_address(VALUE *addr)
02988 {
02989     rb_objspace_t *objspace = &rb_objspace;
02990     struct gc_list *tmp;
02991 
02992     tmp = ALLOC(struct gc_list);
02993     tmp->next = global_List;
02994     tmp->varptr = addr;
02995     global_List = tmp;
02996 }
02997 
02998 void
02999 rb_gc_unregister_address(VALUE *addr)
03000 {
03001     rb_objspace_t *objspace = &rb_objspace;
03002     struct gc_list *tmp = global_List;
03003 
03004     if (tmp->varptr == addr) {
03005         global_List = tmp->next;
03006         xfree(tmp);
03007         return;
03008     }
03009     while (tmp->next) {
03010         if (tmp->next->varptr == addr) {
03011             struct gc_list *t = tmp->next;
03012 
03013             tmp->next = tmp->next->next;
03014             xfree(t);
03015             break;
03016         }
03017         tmp = tmp->next;
03018     }
03019 }
03020 
03021 #define GC_NOTIFY 0
03022 
03023 static int
03024 garbage_collect(rb_objspace_t *objspace)
03025 {
03026     if (GC_NOTIFY) printf("start garbage_collect()\n");
03027 
03028     if (!heaps) {
03029         return FALSE;
03030     }
03031     if (!ready_to_gc(objspace)) {
03032         return TRUE;
03033     }
03034 
03035     gc_prof_timer_start(objspace);
03036 
03037     rest_sweep(objspace);
03038 
03039     during_gc++;
03040     gc_marks(objspace);
03041 
03042     gc_prof_sweep_timer_start(objspace);
03043     gc_sweep(objspace);
03044     gc_prof_sweep_timer_stop(objspace);
03045 
03046     gc_prof_timer_stop(objspace, Qtrue);
03047     if (GC_NOTIFY) printf("end garbage_collect()\n");
03048     return TRUE;
03049 }
03050 
03051 static void *
03052 gc_with_gvl(void *ptr)
03053 {
03054     return (void *)(VALUE)garbage_collect((rb_objspace_t *)ptr);
03055 }
03056 
03057 static int
03058 garbage_collect_with_gvl(rb_objspace_t *objspace)
03059 {
03060     if (dont_gc) return TRUE;
03061     if (ruby_thread_has_gvl_p()) {
03062         return garbage_collect(objspace);
03063     }
03064     else {
03065         if (ruby_native_thread_p()) {
03066             return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)objspace);
03067         }
03068         else {
03069             /* no ruby thread */
03070             fprintf(stderr, "[FATAL] failed to allocate memory\n");
03071             exit(EXIT_FAILURE);
03072         }
03073     }
03074 }
03075 
03076 int
03077 rb_garbage_collect(void)
03078 {
03079     return garbage_collect(&rb_objspace);
03080 }
03081 
03082 #undef Init_stack
03083 
03084 void
03085 Init_stack(volatile VALUE *addr)
03086 {
03087     ruby_init_stack(addr);
03088 }
03089 
03090 /*
03091  *  call-seq:
03092  *     GC.start                     -> nil
03093  *     gc.garbage_collect           -> nil
03094  *     ObjectSpace.garbage_collect  -> nil
03095  *
03096  *  Initiates garbage collection, unless manually disabled.
03097  *
03098  */
03099 
03100 VALUE
03101 rb_gc_start(void)
03102 {
03103     rb_gc();
03104     return Qnil;
03105 }
03106 
03107 void
03108 rb_gc(void)
03109 {
03110     rb_objspace_t *objspace = &rb_objspace;
03111     garbage_collect(objspace);
03112     if (!finalizing) finalize_deferred(objspace);
03113     free_unused_heaps(objspace);
03114 }
03115 
03116 int
03117 rb_during_gc(void)
03118 {
03119     rb_objspace_t *objspace = &rb_objspace;
03120     return during_gc;
03121 }
03122 
03123 /*
03124  *  call-seq:
03125  *     GC.count -> Integer
03126  *
03127  *  The number of times GC occurred.
03128  *
03129  *  It returns the number of times GC occurred since the process started.
03130  *
03131  */
03132 
03133 static VALUE
03134 gc_count(VALUE self)
03135 {
03136     return UINT2NUM(rb_objspace.count);
03137 }
03138 
03139 /*
03140  *  call-seq:
03141  *     GC.stat -> Hash
03142  *
03143  *  Returns a Hash containing information about the GC.
03144  *
03145  *  The hash includes information about internal statistics about GC such as:
03146  *
03147  *      {
03148  *          :count=>0,
03149  *          :heap_used=>12,
03150  *          :heap_length=>12,
03151  *          :heap_increment=>0,
03152  *          :heap_live_num=>7539,
03153  *          :heap_free_num=>88,
03154  *          :heap_final_num=>0,
03155  *          :total_allocated_object=>7630,
03156  *          :total_freed_object=>88
03157  *      }
03158  *
03159  *  The contents of the hash are implementation specific and may be changed in
03160  *  the future.
03161  *
03162  *  This method is only expected to work on C Ruby.
03163  *
03164  */
03165 
03166 static VALUE
03167 gc_stat(int argc, VALUE *argv, VALUE self)
03168 {
03169     rb_objspace_t *objspace = &rb_objspace;
03170     VALUE hash;
03171     static VALUE sym_count;
03172     static VALUE sym_heap_used, sym_heap_length, sym_heap_increment;
03173     static VALUE sym_heap_live_num, sym_heap_free_num, sym_heap_final_num;
03174     static VALUE sym_total_allocated_object, sym_total_freed_object;
03175     if (sym_count == 0) {
03176         sym_count = ID2SYM(rb_intern_const("count"));
03177         sym_heap_used = ID2SYM(rb_intern_const("heap_used"));
03178         sym_heap_length = ID2SYM(rb_intern_const("heap_length"));
03179         sym_heap_increment = ID2SYM(rb_intern_const("heap_increment"));
03180         sym_heap_live_num = ID2SYM(rb_intern_const("heap_live_num"));
03181         sym_heap_free_num = ID2SYM(rb_intern_const("heap_free_num"));
03182         sym_heap_final_num = ID2SYM(rb_intern_const("heap_final_num"));
03183         sym_total_allocated_object = ID2SYM(rb_intern_const("total_allocated_object"));
03184         sym_total_freed_object = ID2SYM(rb_intern_const("total_freed_object"));
03185     }
03186 
03187     if (rb_scan_args(argc, argv, "01", &hash) == 1) {
03188         if (!RB_TYPE_P(hash, T_HASH))
03189             rb_raise(rb_eTypeError, "non-hash given");
03190     }
03191 
03192     if (hash == Qnil) {
03193         hash = rb_hash_new();
03194     }
03195 
03196     rest_sweep(objspace);
03197 
03198     rb_hash_aset(hash, sym_count, SIZET2NUM(objspace->count));
03199     /* implementation dependent counters */
03200     rb_hash_aset(hash, sym_heap_used, SIZET2NUM(objspace->heap.used));
03201     rb_hash_aset(hash, sym_heap_length, SIZET2NUM(objspace->heap.length));
03202     rb_hash_aset(hash, sym_heap_increment, SIZET2NUM(objspace->heap.increment));
03203     rb_hash_aset(hash, sym_heap_live_num, SIZET2NUM(objspace_live_num(objspace)));
03204     rb_hash_aset(hash, sym_heap_free_num, SIZET2NUM(objspace->heap.free_num));
03205     rb_hash_aset(hash, sym_heap_final_num, SIZET2NUM(objspace->heap.final_num));
03206     rb_hash_aset(hash, sym_total_allocated_object, SIZET2NUM(objspace->total_allocated_object_num));
03207     rb_hash_aset(hash, sym_total_freed_object, SIZET2NUM(objspace->total_freed_object_num));
03208 
03209     return hash;
03210 }
03211 
03212 /*
03213  *  call-seq:
03214  *    GC.stress     -> true or false
03215  *
03216  *  Returns current status of GC stress mode.
03217  */
03218 
03219 static VALUE
03220 gc_stress_get(VALUE self)
03221 {
03222     rb_objspace_t *objspace = &rb_objspace;
03223     return ruby_gc_stress ? Qtrue : Qfalse;
03224 }
03225 
03226 /*
03227  *  call-seq:
03228  *    GC.stress = bool          -> bool
03229  *
03230  *  Updates the GC stress mode.
03231  *
03232  *  When stress mode is enabled, the GC is invoked at every GC opportunity:
03233  *  all memory and object allocations.
03234  *
03235  *  Enabling stress mode will degrade performance, it is only for debugging.
03236  */
03237 
03238 static VALUE
03239 gc_stress_set(VALUE self, VALUE flag)
03240 {
03241     rb_objspace_t *objspace = &rb_objspace;
03242     rb_secure(2);
03243     ruby_gc_stress = RTEST(flag);
03244     return flag;
03245 }
03246 
03247 /*
03248  *  call-seq:
03249  *     GC.enable    -> true or false
03250  *
03251  *  Enables garbage collection, returning +true+ if garbage
03252  *  collection was previously disabled.
03253  *
03254  *     GC.disable   #=> false
03255  *     GC.enable    #=> true
03256  *     GC.enable    #=> false
03257  *
03258  */
03259 
03260 VALUE
03261 rb_gc_enable(void)
03262 {
03263     rb_objspace_t *objspace = &rb_objspace;
03264     int old = dont_gc;
03265 
03266     dont_gc = FALSE;
03267     return old ? Qtrue : Qfalse;
03268 }
03269 
03270 /*
03271  *  call-seq:
03272  *     GC.disable    -> true or false
03273  *
03274  *  Disables garbage collection, returning +true+ if garbage
03275  *  collection was already disabled.
03276  *
03277  *     GC.disable   #=> false
03278  *     GC.disable   #=> true
03279  *
03280  */
03281 
03282 VALUE
03283 rb_gc_disable(void)
03284 {
03285     rb_objspace_t *objspace = &rb_objspace;
03286     int old = dont_gc;
03287 
03288     dont_gc = TRUE;
03289     return old ? Qtrue : Qfalse;
03290 }
03291 
03292 void
03293 rb_gc_set_params(void)
03294 {
03295     char *malloc_limit_ptr, *heap_min_slots_ptr, *free_min_ptr;
03296 
03297     if (rb_safe_level() > 0) return;
03298 
03299     malloc_limit_ptr = getenv("RUBY_GC_MALLOC_LIMIT");
03300     if (malloc_limit_ptr != NULL) {
03301         int malloc_limit_i = atoi(malloc_limit_ptr);
03302         if (RTEST(ruby_verbose))
03303             fprintf(stderr, "malloc_limit=%d (%d)\n",
03304                     malloc_limit_i, initial_malloc_limit);
03305         if (malloc_limit_i > 0) {
03306             initial_malloc_limit = malloc_limit_i;
03307         }
03308     }
03309 
03310     heap_min_slots_ptr = getenv("RUBY_HEAP_MIN_SLOTS");
03311     if (heap_min_slots_ptr != NULL) {
03312         int heap_min_slots_i = atoi(heap_min_slots_ptr);
03313         if (RTEST(ruby_verbose))
03314             fprintf(stderr, "heap_min_slots=%d (%d)\n",
03315                     heap_min_slots_i, initial_heap_min_slots);
03316         if (heap_min_slots_i > 0) {
03317             initial_heap_min_slots = heap_min_slots_i;
03318             initial_expand_heap(&rb_objspace);
03319         }
03320     }
03321 
03322     free_min_ptr = getenv("RUBY_FREE_MIN");
03323     if (free_min_ptr != NULL) {
03324         int free_min_i = atoi(free_min_ptr);
03325         if (RTEST(ruby_verbose))
03326             fprintf(stderr, "free_min=%d (%d)\n", free_min_i, initial_free_min);
03327         if (free_min_i > 0) {
03328             initial_free_min = free_min_i;
03329         }
03330     }
03331 }
03332 
03333 void
03334 rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data)
03335 {
03336     rb_objspace_t *objspace = &rb_objspace;
03337 
03338     if (markable_object_p(objspace, obj)) {
03339         struct mark_func_data_struct mfd;
03340         mfd.mark_func = func;
03341         mfd.data = data;
03342         objspace->mark_func_data = &mfd;
03343         gc_mark_children(objspace, obj);
03344         objspace->mark_func_data = 0;
03345     }
03346 }
03347 
03348 /*
03349   ------------------------ Extended allocator ------------------------
03350 */
03351 
03352 static void vm_xfree(rb_objspace_t *objspace, void *ptr);
03353 
03354 static void *
03355 negative_size_allocation_error_with_gvl(void *ptr)
03356 {
03357     rb_raise(rb_eNoMemError, "%s", (const char *)ptr);
03358     return 0; /* should not be reached */
03359 }
03360 
03361 static void
03362 negative_size_allocation_error(const char *msg)
03363 {
03364     if (ruby_thread_has_gvl_p()) {
03365         rb_raise(rb_eNoMemError, "%s", msg);
03366     }
03367     else {
03368         if (ruby_native_thread_p()) {
03369             rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg);
03370         }
03371         else {
03372             fprintf(stderr, "[FATAL] %s\n", msg);
03373             exit(EXIT_FAILURE);
03374         }
03375     }
03376 }
03377 
03378 static void *
03379 ruby_memerror_body(void *dummy)
03380 {
03381     rb_memerror();
03382     return 0;
03383 }
03384 
03385 static void
03386 ruby_memerror(void)
03387 {
03388     if (ruby_thread_has_gvl_p()) {
03389         rb_memerror();
03390     }
03391     else {
03392         if (ruby_native_thread_p()) {
03393             rb_thread_call_with_gvl(ruby_memerror_body, 0);
03394         }
03395         else {
03396             /* no ruby thread */
03397             fprintf(stderr, "[FATAL] failed to allocate memory\n");
03398             exit(EXIT_FAILURE);
03399         }
03400     }
03401 }
03402 
03403 void
03404 rb_memerror(void)
03405 {
03406     rb_thread_t *th = GET_THREAD();
03407     if (!nomem_error ||
03408         (rb_thread_raised_p(th, RAISED_NOMEMORY) && rb_safe_level() < 4)) {
03409         fprintf(stderr, "[FATAL] failed to allocate memory\n");
03410         exit(EXIT_FAILURE);
03411     }
03412     if (rb_thread_raised_p(th, RAISED_NOMEMORY)) {
03413         rb_thread_raised_clear(th);
03414         GET_THREAD()->errinfo = nomem_error;
03415         JUMP_TAG(TAG_RAISE);
03416     }
03417     rb_thread_raised_set(th, RAISED_NOMEMORY);
03418     rb_exc_raise(nomem_error);
03419 }
03420 
03421 static void *
03422 aligned_malloc(size_t alignment, size_t size)
03423 {
03424     void *res;
03425 
03426 #if defined __MINGW32__
03427     res = __mingw_aligned_malloc(size, alignment);
03428 #elif defined _WIN32 && !defined __CYGWIN__
03429     res = _aligned_malloc(size, alignment);
03430 #elif defined(HAVE_POSIX_MEMALIGN)
03431     if (posix_memalign(&res, alignment, size) == 0) {
03432         return res;
03433     }
03434     else {
03435         return NULL;
03436     }
03437 #elif defined(HAVE_MEMALIGN)
03438     res = memalign(alignment, size);
03439 #else
03440     char* aligned;
03441     res = malloc(alignment + size + sizeof(void*));
03442     aligned = (char*)res + alignment + sizeof(void*);
03443     aligned -= ((VALUE)aligned & (alignment - 1));
03444     ((void**)aligned)[-1] = res;
03445     res = (void*)aligned;
03446 #endif
03447 
03448 #if defined(_DEBUG) || defined(GC_DEBUG)
03449     /* alignment must be a power of 2 */
03450     assert((alignment - 1) & alignment == 0);
03451     assert(alignment % sizeof(void*) == 0);
03452 #endif
03453     return res;
03454 }
03455 
03456 static void
03457 aligned_free(void *ptr)
03458 {
03459 #if defined __MINGW32__
03460     __mingw_aligned_free(ptr);
03461 #elif defined _WIN32 && !defined __CYGWIN__
03462     _aligned_free(ptr);
03463 #elif defined(HAVE_MEMALIGN) || defined(HAVE_POSIX_MEMALIGN)
03464     free(ptr);
03465 #else
03466     free(((void**)ptr)[-1]);
03467 #endif
03468 }
03469 
03470 static inline size_t
03471 vm_malloc_prepare(rb_objspace_t *objspace, size_t size)
03472 {
03473     if ((ssize_t)size < 0) {
03474         negative_size_allocation_error("negative allocation size (or too big)");
03475     }
03476     if (size == 0) size = 1;
03477 
03478 #if CALC_EXACT_MALLOC_SIZE
03479     size += sizeof(size_t);
03480 #endif
03481 
03482     if ((ruby_gc_stress && !ruby_disable_gc_stress) ||
03483         (malloc_increase+size) > malloc_limit) {
03484         garbage_collect_with_gvl(objspace);
03485     }
03486 
03487     return size;
03488 }
03489 
03490 static inline void *
03491 vm_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
03492 {
03493     ATOMIC_SIZE_ADD(malloc_increase, size);
03494 
03495 #if CALC_EXACT_MALLOC_SIZE
03496     ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size);
03497     ATOMIC_SIZE_INC(objspace->malloc_params.allocations);
03498     ((size_t *)mem)[0] = size;
03499     mem = (size_t *)mem + 1;
03500 #endif
03501 
03502     return mem;
03503 }
03504 
03505 #define TRY_WITH_GC(alloc) do { \
03506         if (!(alloc) && \
03507             (!garbage_collect_with_gvl(objspace) || \
03508              !(alloc))) { \
03509             ruby_memerror(); \
03510         } \
03511     } while (0)
03512 
03513 static void *
03514 vm_xmalloc(rb_objspace_t *objspace, size_t size)
03515 {
03516     void *mem;
03517 
03518     size = vm_malloc_prepare(objspace, size);
03519     TRY_WITH_GC(mem = malloc(size));
03520     return vm_malloc_fixup(objspace, mem, size);
03521 }
03522 
03523 static void *
03524 vm_xrealloc(rb_objspace_t *objspace, void *ptr, size_t size)
03525 {
03526     void *mem;
03527 #if CALC_EXACT_MALLOC_SIZE
03528     size_t oldsize;
03529 #endif
03530 
03531     if ((ssize_t)size < 0) {
03532         negative_size_allocation_error("negative re-allocation size");
03533     }
03534 
03535     if (!ptr) return vm_xmalloc(objspace, size);
03536 
03537     /*
03538      * The behavior of realloc(ptr, 0) is implementation defined.
03539      * Therefore we don't use realloc(ptr, 0) for portability reason.
03540      * see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm
03541      */
03542     if (size == 0) {
03543         vm_xfree(objspace, ptr);
03544         return 0;
03545     }
03546     if (ruby_gc_stress && !ruby_disable_gc_stress)
03547         garbage_collect_with_gvl(objspace);
03548 
03549 #if CALC_EXACT_MALLOC_SIZE
03550     size += sizeof(size_t);
03551     ptr = (size_t *)ptr - 1;
03552     oldsize = ((size_t *)ptr)[0];
03553 #endif
03554 
03555     mem = realloc(ptr, size);
03556     if (!mem) {
03557         if (garbage_collect_with_gvl(objspace)) {
03558             mem = realloc(ptr, size);
03559         }
03560         if (!mem) {
03561             ruby_memerror();
03562         }
03563     }
03564     ATOMIC_SIZE_ADD(malloc_increase, size);
03565 
03566 #if CALC_EXACT_MALLOC_SIZE
03567     ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size - oldsize);
03568     ((size_t *)mem)[0] = size;
03569     mem = (size_t *)mem + 1;
03570 #endif
03571 
03572     return mem;
03573 }
03574 
03575 static void
03576 vm_xfree(rb_objspace_t *objspace, void *ptr)
03577 {
03578 #if CALC_EXACT_MALLOC_SIZE
03579     size_t size;
03580     ptr = ((size_t *)ptr) - 1;
03581     size = ((size_t*)ptr)[0];
03582     if (size) {
03583         ATOMIC_SIZE_SUB(objspace->malloc_params.allocated_size, size);
03584         ATOMIC_SIZE_DEC(objspace->malloc_params.allocations);
03585     }
03586 #endif
03587 
03588     free(ptr);
03589 }
03590 
03591 void *
03592 ruby_xmalloc(size_t size)
03593 {
03594     return vm_xmalloc(&rb_objspace, size);
03595 }
03596 
03597 static inline size_t
03598 xmalloc2_size(size_t n, size_t size)
03599 {
03600     size_t len = size * n;
03601     if (n != 0 && size != len / n) {
03602         rb_raise(rb_eArgError, "malloc: possible integer overflow");
03603     }
03604     return len;
03605 }
03606 
03607 void *
03608 ruby_xmalloc2(size_t n, size_t size)
03609 {
03610     return vm_xmalloc(&rb_objspace, xmalloc2_size(n, size));
03611 }
03612 
03613 static void *
03614 vm_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize)
03615 {
03616     void *mem;
03617     size_t size;
03618 
03619     size = xmalloc2_size(count, elsize);
03620     size = vm_malloc_prepare(objspace, size);
03621 
03622     TRY_WITH_GC(mem = calloc(1, size));
03623     return vm_malloc_fixup(objspace, mem, size);
03624 }
03625 
03626 void *
03627 ruby_xcalloc(size_t n, size_t size)
03628 {
03629     return vm_xcalloc(&rb_objspace, n, size);
03630 }
03631 
03632 void *
03633 ruby_xrealloc(void *ptr, size_t size)
03634 {
03635     return vm_xrealloc(&rb_objspace, ptr, size);
03636 }
03637 
03638 void *
03639 ruby_xrealloc2(void *ptr, size_t n, size_t size)
03640 {
03641     size_t len = size * n;
03642     if (n != 0 && size != len / n) {
03643         rb_raise(rb_eArgError, "realloc: possible integer overflow");
03644     }
03645     return ruby_xrealloc(ptr, len);
03646 }
03647 
03648 void
03649 ruby_xfree(void *x)
03650 {
03651     if (x)
03652         vm_xfree(&rb_objspace, x);
03653 }
03654 
03655 
03656 /* Mimic ruby_xmalloc, but need not rb_objspace.
03657  * should return pointer suitable for ruby_xfree
03658  */
03659 void *
03660 ruby_mimmalloc(size_t size)
03661 {
03662     void *mem;
03663 #if CALC_EXACT_MALLOC_SIZE
03664     size += sizeof(size_t);
03665 #endif
03666     mem = malloc(size);
03667 #if CALC_EXACT_MALLOC_SIZE
03668     /* set 0 for consistency of allocated_size/allocations */
03669     ((size_t *)mem)[0] = 0;
03670     mem = (size_t *)mem + 1;
03671 #endif
03672     return mem;
03673 }
03674 
03675 #if CALC_EXACT_MALLOC_SIZE
03676 /*
03677  *  call-seq:
03678  *     GC.malloc_allocated_size -> Integer
03679  *
03680  *  Returns the size of memory allocated by malloc().
03681  *
03682  *  Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
03683  */
03684 
03685 static VALUE
03686 gc_malloc_allocated_size(VALUE self)
03687 {
03688     return UINT2NUM(rb_objspace.malloc_params.allocated_size);
03689 }
03690 
03691 /*
03692  *  call-seq:
03693  *     GC.malloc_allocations -> Integer
03694  *
03695  *  Returns the number of malloc() allocations.
03696  *
03697  *  Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
03698  */
03699 
03700 static VALUE
03701 gc_malloc_allocations(VALUE self)
03702 {
03703     return UINT2NUM(rb_objspace.malloc_params.allocations);
03704 }
03705 #endif
03706 
03707 /*
03708   ------------------------------ WeakMap ------------------------------
03709 */
03710 
03711 struct weakmap {
03712     st_table *obj2wmap;         /* obj -> [ref,...] */
03713     st_table *wmap2obj;         /* ref -> obj */
03714     VALUE final;
03715 };
03716 
03717 static int
03718 wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg)
03719 {
03720     gc_mark_ptr((rb_objspace_t *)arg, (VALUE)val);
03721     return ST_CONTINUE;
03722 }
03723 
03724 static void
03725 wmap_mark(void *ptr)
03726 {
03727     struct weakmap *w = ptr;
03728     st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace);
03729     rb_gc_mark(w->final);
03730 }
03731 
03732 static int
03733 wmap_free_map(st_data_t key, st_data_t val, st_data_t arg)
03734 {
03735     rb_ary_resize((VALUE)val, 0);
03736     return ST_CONTINUE;
03737 }
03738 
03739 static void
03740 wmap_free(void *ptr)
03741 {
03742     struct weakmap *w = ptr;
03743     st_foreach(w->obj2wmap, wmap_free_map, 0);
03744     st_free_table(w->obj2wmap);
03745     st_free_table(w->wmap2obj);
03746 }
03747 
03748 size_t rb_ary_memsize(VALUE ary);
03749 static int
03750 wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg)
03751 {
03752     *(size_t *)arg += rb_ary_memsize((VALUE)val);
03753     return ST_CONTINUE;
03754 }
03755 
03756 static size_t
03757 wmap_memsize(const void *ptr)
03758 {
03759     size_t size;
03760     const struct weakmap *w = ptr;
03761     if (!w) return 0;
03762     size = sizeof(*w);
03763     size += st_memsize(w->obj2wmap);
03764     size += st_memsize(w->wmap2obj);
03765     st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size);
03766     return size;
03767 }
03768 
03769 static const rb_data_type_t weakmap_type = {
03770     "weakmap",
03771     {
03772         wmap_mark,
03773         wmap_free,
03774         wmap_memsize,
03775     }
03776 };
03777 
03778 static VALUE
03779 wmap_allocate(VALUE klass)
03780 {
03781     struct weakmap *w;
03782     VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w);
03783     w->obj2wmap = st_init_numtable();
03784     w->wmap2obj = st_init_numtable();
03785     w->final = rb_obj_method(obj, ID2SYM(rb_intern("finalize")));
03786     return obj;
03787 }
03788 
03789 static int
03790 wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
03791 {
03792     VALUE wmap, ary;
03793     if (!existing) return ST_STOP;
03794     wmap = (VALUE)arg, ary = (VALUE)*value;
03795     rb_ary_delete_same(ary, wmap);
03796     if (!RARRAY_LEN(ary)) return ST_DELETE;
03797     return ST_CONTINUE;
03798 }
03799 
03800 static VALUE
03801 wmap_finalize(VALUE self, VALUE objid)
03802 {
03803     st_data_t orig, wmap, data;
03804     VALUE obj, rids;
03805     long i;
03806     struct weakmap *w;
03807 
03808     TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
03809     /* Get reference from object id. */
03810     obj = obj_id_to_ref(objid);
03811 
03812     /* obj is original referenced object and/or weak reference. */
03813     orig = (st_data_t)obj;
03814     if (st_delete(w->obj2wmap, &orig, &data)) {
03815         rids = (VALUE)data;
03816         for (i = 0; i < RARRAY_LEN(rids); ++i) {
03817             wmap = (st_data_t)RARRAY_PTR(rids)[i];
03818             st_delete(w->wmap2obj, &wmap, NULL);
03819         }
03820     }
03821 
03822     wmap = (st_data_t)obj;
03823     if (st_delete(w->wmap2obj, &wmap, &orig)) {
03824         wmap = (st_data_t)obj;
03825         st_update(w->obj2wmap, orig, wmap_final_func, wmap);
03826     }
03827     return self;
03828 }
03829 
03830 /* Creates a weak reference from the given key to the given value */
03831 static VALUE
03832 wmap_aset(VALUE self, VALUE wmap, VALUE orig)
03833 {
03834     st_data_t data;
03835     VALUE rids;
03836     struct weakmap *w;
03837 
03838     TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
03839     rb_define_final(orig, w->final);
03840     rb_define_final(wmap, w->final);
03841     if (st_lookup(w->obj2wmap, (st_data_t)orig, &data)) {
03842         rids = (VALUE)data;
03843     }
03844     else {
03845         rids = rb_ary_tmp_new(1);
03846         st_insert(w->obj2wmap, (st_data_t)orig, (st_data_t)rids);
03847     }
03848     rb_ary_push(rids, wmap);
03849     st_insert(w->wmap2obj, (st_data_t)wmap, (st_data_t)orig);
03850     return nonspecial_obj_id(orig);
03851 }
03852 
03853 /* Retrieves a weakly referenced object with the given key */
03854 static VALUE
03855 wmap_aref(VALUE self, VALUE wmap)
03856 {
03857     st_data_t data;
03858     VALUE obj;
03859     struct weakmap *w;
03860     rb_objspace_t *objspace = &rb_objspace;
03861 
03862     TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
03863     if (!st_lookup(w->wmap2obj, (st_data_t)wmap, &data)) return Qnil;
03864     obj = (VALUE)data;
03865     if (!is_id_value(objspace, obj)) return Qnil;
03866     if (!is_live_object(objspace, obj)) return Qnil;
03867     return obj;
03868 }
03869 
03870 
03871 /*
03872   ------------------------------ GC profiler ------------------------------
03873 */
03874 
03875 static inline void gc_prof_set_heap_info(rb_objspace_t *, gc_profile_record *);
03876 #define GC_PROFILE_RECORD_DEFAULT_SIZE 100
03877 
03878 static double
03879 getrusage_time(void)
03880 {
03881 #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)
03882     struct timespec ts;
03883 
03884     if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts) == 0) {
03885         return ts.tv_sec + ts.tv_nsec * 1e-9;
03886     }
03887     return 0.0;
03888 #elif defined RUSAGE_SELF
03889     struct rusage usage;
03890     struct timeval time;
03891     getrusage(RUSAGE_SELF, &usage);
03892     time = usage.ru_utime;
03893     return time.tv_sec + time.tv_usec * 1e-6;
03894 #elif defined _WIN32
03895     FILETIME creation_time, exit_time, kernel_time, user_time;
03896     ULARGE_INTEGER ui;
03897     LONG_LONG q;
03898     double t;
03899 
03900     if (GetProcessTimes(GetCurrentProcess(),
03901                         &creation_time, &exit_time, &kernel_time, &user_time) == 0)
03902     {
03903         return 0.0;
03904     }
03905     memcpy(&ui, &user_time, sizeof(FILETIME));
03906     q = ui.QuadPart / 10L;
03907     t = (DWORD)(q % 1000000L) * 1e-6;
03908     q /= 1000000L;
03909 #ifdef __GNUC__
03910     t += q;
03911 #else
03912     t += (double)(DWORD)(q >> 16) * (1 << 16);
03913     t += (DWORD)q & ~(~0 << 16);
03914 #endif
03915     return t;
03916 #else
03917     return 0.0;
03918 #endif
03919 }
03920 
03921 static inline void
03922 gc_prof_timer_start(rb_objspace_t *objspace)
03923 {
03924     if (objspace->profile.run) {
03925         size_t count = objspace->profile.count;
03926 
03927         if (!objspace->profile.record) {
03928             objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE;
03929             objspace->profile.record = malloc(sizeof(gc_profile_record) * objspace->profile.size);
03930         }
03931         if (count >= objspace->profile.size) {
03932             objspace->profile.size += 1000;
03933             objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);
03934         }
03935         if (!objspace->profile.record) {
03936             rb_bug("gc_profile malloc or realloc miss");
03937         }
03938         MEMZERO(&objspace->profile.record[count], gc_profile_record, 1);
03939         objspace->profile.record[count].gc_time = getrusage_time();
03940         objspace->profile.record[objspace->profile.count].gc_invoke_time =
03941             objspace->profile.record[count].gc_time - objspace->profile.invoke_time;
03942     }
03943 }
03944 
03945 static inline void
03946 gc_prof_timer_stop(rb_objspace_t *objspace, int marked)
03947 {
03948     if (objspace->profile.run) {
03949         double gc_time = 0;
03950         size_t count = objspace->profile.count;
03951         gc_profile_record *record = &objspace->profile.record[count];
03952 
03953         gc_time = getrusage_time() - record->gc_time;
03954         if (gc_time < 0) gc_time = 0;
03955         record->gc_time = gc_time;
03956         record->is_marked = !!(marked);
03957         gc_prof_set_heap_info(objspace, record);
03958         objspace->profile.count++;
03959     }
03960 }
03961 
03962 #if !GC_PROFILE_MORE_DETAIL
03963 
03964 static inline void
03965 gc_prof_mark_timer_start(rb_objspace_t *objspace)
03966 {
03967     if (RUBY_DTRACE_GC_MARK_BEGIN_ENABLED()) {
03968         RUBY_DTRACE_GC_MARK_BEGIN();
03969     }
03970 }
03971 
03972 static inline void
03973 gc_prof_mark_timer_stop(rb_objspace_t *objspace)
03974 {
03975     if (RUBY_DTRACE_GC_MARK_END_ENABLED()) {
03976         RUBY_DTRACE_GC_MARK_END();
03977     }
03978 }
03979 
03980 static inline void
03981 gc_prof_sweep_timer_start(rb_objspace_t *objspace)
03982 {
03983     if (RUBY_DTRACE_GC_SWEEP_BEGIN_ENABLED()) {
03984         RUBY_DTRACE_GC_SWEEP_BEGIN();
03985     }
03986 }
03987 
03988 static inline void
03989 gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
03990 {
03991     if (RUBY_DTRACE_GC_SWEEP_END_ENABLED()) {
03992         RUBY_DTRACE_GC_SWEEP_END();
03993     }
03994 }
03995 
03996 static inline void
03997 gc_prof_set_malloc_info(rb_objspace_t *objspace)
03998 {
03999 }
04000 
04001 static inline void
04002 gc_prof_set_heap_info(rb_objspace_t *objspace, gc_profile_record *record)
04003 {
04004     size_t live = objspace_live_num(objspace);
04005     size_t total = heaps_used * HEAP_OBJ_LIMIT;
04006 
04007     record->heap_total_objects = total;
04008     record->heap_use_size = live * sizeof(RVALUE);
04009     record->heap_total_size = total * sizeof(RVALUE);
04010 }
04011 
04012 #else
04013 
04014 static inline void
04015 gc_prof_mark_timer_start(rb_objspace_t *objspace)
04016 {
04017     if (RUBY_DTRACE_GC_MARK_BEGIN_ENABLED()) {
04018         RUBY_DTRACE_GC_MARK_BEGIN();
04019     }
04020     if (objspace->profile.run) {
04021         size_t count = objspace->profile.count;
04022 
04023         objspace->profile.record[count].gc_mark_time = getrusage_time();
04024     }
04025 }
04026 
04027 static inline void
04028 gc_prof_mark_timer_stop(rb_objspace_t *objspace)
04029 {
04030     if (RUBY_DTRACE_GC_MARK_END_ENABLED()) {
04031         RUBY_DTRACE_GC_MARK_END();
04032     }
04033     if (objspace->profile.run) {
04034         double mark_time = 0;
04035         size_t count = objspace->profile.count;
04036         gc_profile_record *record = &objspace->profile.record[count];
04037 
04038         mark_time = getrusage_time() - record->gc_mark_time;
04039         if (mark_time < 0) mark_time = 0;
04040         record->gc_mark_time = mark_time;
04041     }
04042 }
04043 
04044 static inline void
04045 gc_prof_sweep_timer_start(rb_objspace_t *objspace)
04046 {
04047     if (RUBY_DTRACE_GC_SWEEP_BEGIN_ENABLED()) {
04048         RUBY_DTRACE_GC_SWEEP_BEGIN();
04049     }
04050     if (objspace->profile.run) {
04051         size_t count = objspace->profile.count;
04052 
04053         objspace->profile.record[count].gc_sweep_time = getrusage_time();
04054     }
04055 }
04056 
04057 static inline void
04058 gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
04059 {
04060     if (RUBY_DTRACE_GC_SWEEP_END_ENABLED()) {
04061         RUBY_DTRACE_GC_SWEEP_END();
04062     }
04063     if (objspace->profile.run) {
04064         double sweep_time = 0;
04065         size_t count = objspace->profile.count;
04066         gc_profile_record *record = &objspace->profile.record[count];
04067 
04068         sweep_time = getrusage_time() - record->gc_sweep_time;\
04069         if (sweep_time < 0) sweep_time = 0;\
04070         record->gc_sweep_time = sweep_time;
04071     }
04072 }
04073 
04074 static inline void
04075 gc_prof_set_malloc_info(rb_objspace_t *objspace)
04076 {
04077     if (objspace->profile.run) {
04078         gc_profile_record *record = &objspace->profile.record[objspace->profile.count];
04079         if (record) {
04080             record->allocate_increase = malloc_increase;
04081             record->allocate_limit = malloc_limit;
04082         }
04083     }
04084 }
04085 
04086 static inline void
04087 gc_prof_set_heap_info(rb_objspace_t *objspace, gc_profile_record *record)
04088 {
04089     size_t live = objspace->heap.live_num;
04090     size_t total = heaps_used * HEAP_OBJ_LIMIT;
04091 
04092     record->heap_use_slots = heaps_used;
04093     record->heap_live_objects = live;
04094     record->heap_free_objects = total - live;
04095     record->heap_total_objects = total;
04096     record->have_finalize = deferred_final_list ? Qtrue : Qfalse;
04097     record->heap_use_size = live * sizeof(RVALUE);
04098     record->heap_total_size = total * sizeof(RVALUE);
04099 }
04100 
04101 #endif /* !GC_PROFILE_MORE_DETAIL */
04102 
04103 
04104 /*
04105  *  call-seq:
04106  *    GC::Profiler.clear          -> nil
04107  *
04108  *  Clears the GC profiler data.
04109  *
04110  */
04111 
04112 static VALUE
04113 gc_profile_clear(void)
04114 {
04115     rb_objspace_t *objspace = &rb_objspace;
04116 
04117     if (GC_PROFILE_RECORD_DEFAULT_SIZE * 2 < objspace->profile.size) {
04118         objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE * 2;
04119         objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);
04120         if (!objspace->profile.record) {
04121             rb_memerror();
04122         }
04123     }
04124     MEMZERO(objspace->profile.record, gc_profile_record, objspace->profile.size);
04125     objspace->profile.count = 0;
04126     return Qnil;
04127 }
04128 
04129 /*
04130  *  call-seq:
04131  *     GC::Profiler.raw_data    -> [Hash, ...]
04132  *
04133  *  Returns an Array of individual raw profile data Hashes ordered
04134  *  from earliest to latest by +:GC_INVOKE_TIME+.
04135  *
04136  *  For example:
04137  *
04138  *    [
04139  *      {
04140  *         :GC_TIME=>1.3000000000000858e-05,
04141  *         :GC_INVOKE_TIME=>0.010634999999999999,
04142  *         :HEAP_USE_SIZE=>289640,
04143  *         :HEAP_TOTAL_SIZE=>588960,
04144  *         :HEAP_TOTAL_OBJECTS=>14724,
04145  *         :GC_IS_MARKED=>false
04146  *      },
04147  *      # ...
04148  *    ]
04149  *
04150  *  The keys mean:
04151  *
04152  *  +:GC_TIME+::
04153  *      Time elapsed in seconds for this GC run
04154  *  +:GC_INVOKE_TIME+::
04155  *      Time elapsed in seconds from startup to when the GC was invoked
04156  *  +:HEAP_USE_SIZE+::
04157  *      Total bytes of heap used
04158  *  +:HEAP_TOTAL_SIZE+::
04159  *      Total size of heap in bytes
04160  *  +:HEAP_TOTAL_OBJECTS+::
04161  *      Total number of objects
04162  *  +:GC_IS_MARKED+::
04163  *      Returns +true+ if the GC is in mark phase
04164  *
04165  *  If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access
04166  *  to the following hash keys:
04167  *
04168  *  +:GC_MARK_TIME+::
04169  *  +:GC_SWEEP_TIME+::
04170  *  +:ALLOCATE_INCREASE+::
04171  *  +:ALLOCATE_LIMIT+::
04172  *  +:HEAP_USE_SLOTS+::
04173  *  +:HEAP_LIVE_OBJECTS+::
04174  *  +:HEAP_FREE_OBJECTS+::
04175  *  +:HAVE_FINALIZE+::
04176  *
04177  */
04178 
04179 static VALUE
04180 gc_profile_record_get(void)
04181 {
04182     VALUE prof;
04183     VALUE gc_profile = rb_ary_new();
04184     size_t i;
04185     rb_objspace_t *objspace = (&rb_objspace);
04186 
04187     if (!objspace->profile.run) {
04188         return Qnil;
04189     }
04190 
04191     for (i =0; i < objspace->profile.count; i++) {
04192         prof = rb_hash_new();
04193         rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(objspace->profile.record[i].gc_time));
04194         rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(objspace->profile.record[i].gc_invoke_time));
04195         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_use_size));
04196         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_total_size));
04197         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_total_objects));
04198         rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), objspace->profile.record[i].is_marked);
04199 #if GC_PROFILE_MORE_DETAIL
04200         rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(objspace->profile.record[i].gc_mark_time));
04201         rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(objspace->profile.record[i].gc_sweep_time));
04202         rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(objspace->profile.record[i].allocate_increase));
04203         rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(objspace->profile.record[i].allocate_limit));
04204         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SLOTS")), SIZET2NUM(objspace->profile.record[i].heap_use_slots));
04205         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_live_objects));
04206         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_free_objects));
04207         rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), objspace->profile.record[i].have_finalize);
04208 #endif
04209         rb_ary_push(gc_profile, prof);
04210     }
04211 
04212     return gc_profile;
04213 }
04214 
04215 static void
04216 gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE))
04217 {
04218     rb_objspace_t *objspace = &rb_objspace;
04219     size_t count = objspace->profile.count;
04220 
04221     if (objspace->profile.run && count) {
04222         int index = 1;
04223         size_t i;
04224         gc_profile_record r;
04225         append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->count));
04226         append(out, rb_str_new_cstr("Index    Invoke Time(sec)       Use Size(byte)     Total Size(byte)         Total Object                    GC Time(ms)\n"));
04227         for (i = 0; i < count; i++) {
04228             r = objspace->profile.record[i];
04229 #if !GC_PROFILE_MORE_DETAIL
04230             if (r.is_marked) {
04231 #endif
04232                 append(out, rb_sprintf("%5d %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
04233                         index++, r.gc_invoke_time, r.heap_use_size,
04234                         r.heap_total_size, r.heap_total_objects, r.gc_time*1000));
04235 #if !GC_PROFILE_MORE_DETAIL
04236             }
04237 #endif
04238         }
04239 #if GC_PROFILE_MORE_DETAIL
04240         append(out, rb_str_new_cstr("\n\n" \
04241                 "More detail.\n" \
04242                 "Index Allocate Increase    Allocate Limit  Use Slot  Have Finalize             Mark Time(ms)            Sweep Time(ms)\n"));
04243         index = 1;
04244         for (i = 0; i < count; i++) {
04245             r = objspace->profile.record[i];
04246             append(out, rb_sprintf("%5d %17"PRIuSIZE" %17"PRIuSIZE" %9"PRIuSIZE" %14s %25.20f %25.20f\n",
04247                         index++, r.allocate_increase, r.allocate_limit,
04248                         r.heap_use_slots, (r.have_finalize ? "true" : "false"),
04249                         r.gc_mark_time*1000, r.gc_sweep_time*1000));
04250         }
04251 #endif
04252     }
04253 }
04254 
04255 /*
04256  *  call-seq:
04257  *     GC::Profiler.result  -> String
04258  *
04259  *  Returns a profile data report such as:
04260  *
04261  *    GC 1 invokes.
04262  *    Index    Invoke Time(sec)       Use Size(byte)     Total Size(byte)         Total Object                    GC time(ms)
04263  *        1               0.012               159240               212940                10647         0.00000000000001530000
04264  */
04265 
04266 static VALUE
04267 gc_profile_result(void)
04268 {
04269         VALUE str = rb_str_buf_new(0);
04270         gc_profile_dump_on(str, rb_str_buf_append);
04271         return str;
04272 }
04273 
04274 /*
04275  *  call-seq:
04276  *     GC::Profiler.report
04277  *     GC::Profiler.report(io)
04278  *
04279  *  Writes the GC::Profiler.result to <tt>$stdout</tt> or the given IO object.
04280  *
04281  */
04282 
04283 static VALUE
04284 gc_profile_report(int argc, VALUE *argv, VALUE self)
04285 {
04286     VALUE out;
04287 
04288     if (argc == 0) {
04289         out = rb_stdout;
04290     }
04291     else {
04292         rb_scan_args(argc, argv, "01", &out);
04293     }
04294     gc_profile_dump_on(out, rb_io_write);
04295 
04296     return Qnil;
04297 }
04298 
04299 /*
04300  *  call-seq:
04301  *     GC::Profiler.total_time  -> float
04302  *
04303  *  The total time used for garbage collection in seconds
04304  */
04305 
04306 static VALUE
04307 gc_profile_total_time(VALUE self)
04308 {
04309     double time = 0;
04310     rb_objspace_t *objspace = &rb_objspace;
04311     size_t i;
04312 
04313     if (objspace->profile.run && objspace->profile.count) {
04314         for (i = 0; i < objspace->profile.count; i++) {
04315             time += objspace->profile.record[i].gc_time;
04316         }
04317     }
04318     return DBL2NUM(time);
04319 }
04320 
04321 /*
04322  *  call-seq:
04323  *    GC::Profiler.enabled?     -> true or false
04324  *
04325  *  The current status of GC profile mode.
04326  */
04327 
04328 static VALUE
04329 gc_profile_enable_get(VALUE self)
04330 {
04331     rb_objspace_t *objspace = &rb_objspace;
04332     return objspace->profile.run ? Qtrue : Qfalse;
04333 }
04334 
04335 /*
04336  *  call-seq:
04337  *    GC::Profiler.enable       -> nil
04338  *
04339  *  Starts the GC profiler.
04340  *
04341  */
04342 
04343 static VALUE
04344 gc_profile_enable(void)
04345 {
04346     rb_objspace_t *objspace = &rb_objspace;
04347 
04348     objspace->profile.run = TRUE;
04349     return Qnil;
04350 }
04351 
04352 /*
04353  *  call-seq:
04354  *    GC::Profiler.disable      -> nil
04355  *
04356  *  Stops the GC profiler.
04357  *
04358  */
04359 
04360 static VALUE
04361 gc_profile_disable(void)
04362 {
04363     rb_objspace_t *objspace = &rb_objspace;
04364 
04365     objspace->profile.run = FALSE;
04366     return Qnil;
04367 }
04368 
04369 #ifdef GC_DEBUG
04370 
04371 /*
04372   ------------------------------ DEBUG ------------------------------
04373 */
04374 
04375 void
04376 rb_gcdebug_print_obj_condition(VALUE obj)
04377 {
04378     rb_objspace_t *objspace = &rb_objspace;
04379 
04380     if (is_pointer_to_heap(objspace, (void *)obj)) {
04381         fprintf(stderr, "pointer to heap?: true\n");
04382     }
04383     else {
04384         fprintf(stderr, "pointer to heap?: false\n");
04385         return;
04386     }
04387     fprintf(stderr, "marked?: %s\n",
04388             MARKED_IN_BITMAP(GET_HEAP_BITMAP(obj), obj) ? "true" : "false");
04389     if (is_lazy_sweeping(objspace)) {
04390         fprintf(stderr, "lazy sweeping?: true\n");
04391         fprintf(stderr, "swept?: %s\n",
04392                 is_swept_object(objspace, obj) ? "done" : "not yet");
04393     }
04394     else {
04395         fprintf(stderr, "lazy sweeping?: false\n");
04396     }
04397 }
04398 
04399 static VALUE
04400 gcdebug_sential(VALUE obj, VALUE name)
04401 {
04402     fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj);
04403     return Qnil;
04404 }
04405 
04406 void
04407 rb_gcdebug_sentinel(VALUE obj, const char *name)
04408 {
04409     rb_define_final(obj, rb_proc_new(gcdebug_sential, (VALUE)name));
04410 }
04411 #endif /* GC_DEBUG */
04412 
04413 
04414 /*
04415  * Document-class: ObjectSpace
04416  *
04417  *  The ObjectSpace module contains a number of routines
04418  *  that interact with the garbage collection facility and allow you to
04419  *  traverse all living objects with an iterator.
04420  *
04421  *  ObjectSpace also provides support for object finalizers, procs that will be
04422  *  called when a specific object is about to be destroyed by garbage
04423  *  collection.
04424  *
04425  *     include ObjectSpace
04426  *
04427  *     a = "A"
04428  *     b = "B"
04429  *     c = "C"
04430  *
04431  *     define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
04432  *     define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" })
04433  *     define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })
04434  *
04435  *  _produces:_
04436  *
04437  *     Finalizer three on 537763470
04438  *     Finalizer one on 537763480
04439  *     Finalizer two on 537763480
04440  *
04441  */
04442 
04443 /*
04444  *  Document-class: ObjectSpace::WeakMap
04445  *
04446  *  An ObjectSpace::WeakMap object holds references to
04447  *  any objects, but those objects can get garbage collected.
04448  *
04449  *  This class is mostly used internally by WeakRef, please use
04450  *  +lib/weakref.rb+ for the public interface.
04451  */
04452 
04453 /*  Document-class: GC::Profiler
04454  *
04455  *  The GC profiler provides access to information on GC runs including time,
04456  *  length and object space size.
04457  *
04458  *  Example:
04459  *
04460  *    GC::Profiler.enable
04461  *
04462  *    require 'rdoc/rdoc'
04463  *
04464  *    GC::Profiler.report
04465  *
04466  *    GC::Profiler.disable
04467  *
04468  *  See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
04469  */
04470 
04471 /*
04472  *  The GC module provides an interface to Ruby's mark and
04473  *  sweep garbage collection mechanism.
04474  *
04475  *  Some of the underlying methods are also available via the ObjectSpace
04476  *  module.
04477  *
04478  *  You may obtain information about the operation of the GC through
04479  *  GC::Profiler.
04480  */
04481 
04482 void
04483 Init_GC(void)
04484 {
04485     VALUE rb_mObSpace;
04486     VALUE rb_mProfiler;
04487 
04488     rb_mGC = rb_define_module("GC");
04489     rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0);
04490     rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
04491     rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
04492     rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
04493     rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1);
04494     rb_define_singleton_method(rb_mGC, "count", gc_count, 0);
04495     rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1);
04496     rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0);
04497 
04498     rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
04499     rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
04500     rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
04501     rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
04502     rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
04503     rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
04504     rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
04505     rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
04506     rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
04507 
04508     rb_mObSpace = rb_define_module("ObjectSpace");
04509     rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1);
04510     rb_define_module_function(rb_mObSpace, "garbage_collect", rb_gc_start, 0);
04511 
04512     rb_define_module_function(rb_mObSpace, "define_finalizer", define_final, -1);
04513     rb_define_module_function(rb_mObSpace, "undefine_finalizer", undefine_final, 1);
04514 
04515     rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1);
04516 
04517     nomem_error = rb_exc_new3(rb_eNoMemError,
04518                               rb_obj_freeze(rb_str_new2("failed to allocate memory")));
04519     OBJ_TAINT(nomem_error);
04520     OBJ_FREEZE(nomem_error);
04521 
04522     rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
04523     rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
04524 
04525     rb_define_module_function(rb_mObSpace, "count_objects", count_objects, -1);
04526 
04527     {
04528         VALUE rb_cWeakMap = rb_define_class_under(rb_mObSpace, "WeakMap", rb_cObject);
04529         rb_define_alloc_func(rb_cWeakMap, wmap_allocate);
04530         rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2);
04531         rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1);
04532         rb_define_private_method(rb_cWeakMap, "finalize", wmap_finalize, 1);
04533     }
04534 
04535 #if CALC_EXACT_MALLOC_SIZE
04536     rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
04537     rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
04538 #endif
04539 }
04540